Codes in distance-regular graphs with theta(2) = -1

被引:1
|
作者
Nirova, Marina Sefovna [1 ]
机构
[1] Kabardino Balkarian State Univ, Nalchik 360004, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2018年 / 24卷 / 03期
关键词
distance-regular graph; maximal code;
D O I
10.21538/0134-4889-2018-24-3-155-163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a distance-regular graph Gamma of diameter 3 contains a maximal 1-code C that is both locally regular and last subconstituent perfect, then Gamma has intersection array {a(p+1), cp, a+1; 1, c, ap} or {a(p+1), (a+1)p, c; 1, c, ap}, where a = a(3), c = c(2), and p = p(33)(3) (Jurisic and Vidali). In first case, Gamma has eigenvalue theta(2) = -1 and the graph Gamma(3) is pseudogeometric for GQ(p + 1, a). In the second case, Gamma is a Shilla graph. We study graphs with intersection array {a(p+1), cp, a+1; 1, c, ap} in which any two vertices at distance 3 are in a maximal 1-code. In particular, we find four new infinite families of intersection arrays: {a(a - 2), (a - 1)(a - 3), a + 1; 1, a - 1, a(a - 3)} for a >= 5, {a(2a + 3), 2(a - 1)(a + 1), a + 1; 1, a - 1, 2a(a + 1)} for a not congruent to 1 modulo 3, {a(2a - 3), 2(a - 1)(a - 2), a+1; 1, a - 1, 2a(a - 2)} for even a not congruent to 1 modulo 3, and {a(3a - 4), (a - 1)(3a - 5), a + 1; 1, a - 1, a(3a - 5)} for even a congruent to 0 or 2 modulo 5.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [1] On distance-regular graphs with theta(2) = -1.
    Nirova, Marina Sefovna
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 215 - 228
  • [2] CODES IN BIPARTITE DISTANCE-REGULAR GRAPHS
    BANNAI, E
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (OCT): : 197 - 202
  • [3] Codes in Shilla Distance-Regular Graphs
    I. N. Belousov
    Proceedings of the Steklov Institute of Mathematics, 2019, 305 : S4 - S9
  • [4] Codes in Shilla Distance-Regular Graphs
    Belousov, I. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (Suppl 1) : S4 - S9
  • [5] Codes in Shilla distance-regular graphs
    Belousov, Ivan NIkolaevich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 34 - 39
  • [6] NEARLY PERFECT CODES IN DISTANCE-REGULAR GRAPHS
    HAMMOND, P
    DISCRETE MATHEMATICS, 1976, 14 (01) : 41 - 56
  • [7] An algebraic characterization of completely regular codes in distance-regular graphs
    Fiol, MA
    Garriga, E
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (01) : 1 - 13
  • [8] FAMILIES OF NESTED COMPLETELY REGULAR CODES AND DISTANCE-REGULAR GRAPHS
    Borges, Joaquim
    Rifa, Josep
    Zinoviev, Victor A.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (02) : 233 - 246
  • [9] Extremal 1-codes in distance-regular graphs of diameter 3
    Aleksandar Jurišić
    Janoš Vidali
    Designs, Codes and Cryptography, 2012, 65 : 29 - 47
  • [10] Extremal 1-codes in distance-regular graphs of diameter 3
    Jurisic, Aleksandar
    Vidali, Janos
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (1-2) : 29 - 47