STOCHASTIC CONTROL BASED ON TIME-CHANGE TRANSFORMATIONS FOR STOCHASTIC PROCESSES WITH LEVY NOISE

被引:0
|
作者
Bodnarchuk, S. V. [1 ]
Kulik, O. M. [2 ]
机构
[1] Natl Tech Univ Ukraine KPI, Perem Ave 37, UA-03056 Kiev, Ukraine
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new method of a stochastic control of stochastic processes with Levy noise, based on the time-change transformations. Using this method, for a Markov process defined by a stochastic equation with Levy noise, we prove that the minorization condition holds true in the integral form and obtain explicit estimates for the convergence rate in the ergodic theorem.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 50 条
  • [1] A TRACTABLE MULTIVARIATE DEFAULT MODEL BASED ON A STOCHASTIC TIME-CHANGE
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (02) : 227 - 249
  • [2] Stochastic Control of Tidal Dynamics Equation with Levy Noise
    Agarwal, Pooja
    Manna, Utpal
    Mukherjee, Debopriya
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (02): : 327 - 396
  • [3] Stochastic bounds for Levy processes
    Doney, RA
    [J]. ANNALS OF PROBABILITY, 2004, 32 (02): : 1545 - 1552
  • [4] Stochastic volatility for Levy processes
    Carr, P
    Geman, H
    Madan, DB
    Yor, M
    [J]. MATHEMATICAL FINANCE, 2003, 13 (03) : 345 - 382
  • [5] Stabilisation of hybrid stochastic systems with Levy noise by discrete-time feedback control
    Li, Guangjie
    Yang, Qigui
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (01) : 197 - 205
  • [6] STOCHASTIC DIFFERENTIAL EQUATIONS AND STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM WITH LEVY PROCESSES
    Huaibin TANG Zhen WU School of Mathematics
    [J]. Journal of Systems Science & Complexity, 2009, 22 (01) : 122 - 136
  • [7] Optimal control for stochastic Volterra equations with multiplicative Levy noise
    Bonaccorsi, Stefano
    Confortola, Fulvia
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (03):
  • [8] Time-change models for asymmetric processes
    Ailliot, Pierre
    Delyon, Bernard
    Monbet, Valerie
    Prevosto, Marc
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (04) : 1072 - 1097
  • [9] On a class of singular stochastic control problems driven by Levy noise
    Goldys, Beniamin
    Wu, Wei
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3174 - 3206
  • [10] Local time-space stochastic calculus for Levy processes
    Eisenbaum, N
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (05) : 757 - 778