INVARIANT DECOMPOSITION OF SOLUTION OF DIRAC EQUATION

被引:0
|
作者
AGAMALIEV, AK
ATAKISHI.NM
VERDIEV, IA
机构
来源
关键词
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
引用
收藏
页码:106 / +
页数:1
相关论文
共 50 条
  • [1] Solution of the Dirac equation in lattice QCD using a domain decomposition method
    Lüscher, M
    COMPUTER PHYSICS COMMUNICATIONS, 2004, 156 (03) : 209 - 220
  • [2] ASYMPTOTIC SOLUTION OF DIRAC EQUATION
    RUBINOW, SI
    KELLER, JB
    PHYSICAL REVIEW, 1963, 131 (06): : 2789 - &
  • [3] Multidimensional Spinors, Invariant Form, and the Dirac Equation
    V. V. Monakhov
    A. V. Kozhedub
    Physics of Particles and Nuclei, 2023, 54 : 480 - 488
  • [4] Multidimensional Spinors, Invariant Form, and the Dirac Equation
    Monakhov, V. V.
    Kozhedub, A. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2023, 54 (03) : 480 - 488
  • [5] Lorentz invariant CPT breaking in the Dirac equation
    Fujikawa, Kazuo
    Tureanu, Anca
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (09):
  • [6] Solution of the Dirac equation for a Dirac particle in a Yukawa field
    Gulveren, B
    Demirtas, A
    Ogul, R
    PHYSICA SCRIPTA, 2001, 64 (04): : 277 - 278
  • [7] The solution of the Dirac equation with the interaction term*
    Tsai, YS
    Tsai, HM
    Tsai, PY
    Tsai, LH
    QUANTUM THEORY AND SYMMETRIES, 2004, : 431 - 436
  • [8] Structure of the Fundamental Solution of the Dirac Equation
    A. A. Beilinson
    Theoretical and Mathematical Physics, 2005, 145 : 1504 - 1510
  • [9] Solution of the Dirac Equation in Expanding Universes
    Antonio Zecca
    International Journal of Theoretical Physics, 2006, 45 : 44 - 52
  • [10] SOLUTION OF DIRAC EQUATION FOR A CLASS OF POTENTIALS
    VERBEURE, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1966, 80 (03): : 302 - &