On the study of nonlinear integrable systems in (2+1) dimensions by Drinfeld-Sokolov method

被引:0
|
作者
Mukhopadhyay, I
Roychowdhury, A
机构
关键词
D O I
10.1142/S0217732395002982
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Drinfeld-Sokolov formalism is extended to the case of operator-valued affine Lie algebra to derive nonlinear integrable dynamical systems in (2 + 1) dimensions. The Poisson structure of these integrable equations are also worked out. While from the first- and second-order flows we get some new integrable equations in (2 + 1) dimensions, the KP equation is seen to result from the third-order flow. Complete integrability of such equations and the existence of the bi-Hamiltonian structure are demonstrated.
引用
收藏
页码:2843 / 2852
页数:10
相关论文
共 50 条
  • [1] Integrable hierarchies in the Drinfeld-Sokolov approach
    Feher, L
    Delduc, F
    Gallot, L
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 251 - 253
  • [2] Integrable sigma-models and Drinfeld-Sokolov hierarchies
    Evans, JM
    [J]. NUCLEAR PHYSICS B, 2001, 608 (03) : 591 - 609
  • [3] ON GELFAND-DICKEY AND DRINFELD-SOKOLOV SYSTEMS
    GESZTESY, F
    RACE, D
    UNTERKOFLER, K
    WEIKARD, R
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (02) : 227 - 276
  • [4] Classical Affine W-Superalgebras via Generalized Drinfeld-Sokolov Reductions and Related Integrable Systems
    Suh, Uhi Rinn
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (01) : 199 - 236
  • [5] Drinfeld-Sokolov Hierarchies of Type A and Fourth Order Painleve Systems
    Fuji, Kenta
    Suzuki, Takao
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 143 - 167
  • [6] GENERALIZED DRINFELD-SOKOLOV HIERARCHIES .2. THE HAMILTONIAN STRUCTURES
    BURROUGHS, NJ
    DEGROOT, MF
    HOLLOWOOD, TJ
    MIRAMONTES, JL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (01) : 187 - 215
  • [7] On a supersymmetric nonlinear integrable equation in (2+1) dimensions
    Zhigang Yin
    Lu Yu
    Minli Li
    [J]. Journal of Nonlinear Mathematical Physics, 2015, 22 : 204 - 209
  • [8] On a supersymmetric nonlinear integrable equation in (2+1) dimensions
    Yin, Zhigang
    Yu, Lu
    Li, Minli
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2015, 22 (02) : 204 - 209
  • [9] An application of the exponential rational function method to exact solutions to the Drinfeld-Sokolov system
    Gunay, B.
    Kuo, Chun-Ku
    Ma, Wen-Xiu
    [J]. RESULTS IN PHYSICS, 2021, 29
  • [10] HIERARCHIES OF NONLINEAR INTEGRABLE EQUATIONS AND THEIR SYMMETRIES IN 2+1 DIMENSIONS
    CHENG, Y
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1990, 46 (02) : 286 - 294