ON WEAKLY PERIODIC-LIKE RINGS AND COMMUTATIVITY THEOREMS

被引:0
|
作者
Abu-Khuzam, Hazar [1 ]
Bell, Howard E.
Yaqub, Adil
机构
[1] Amer Univ Beirut, Dept Math, Beirut, Lebanon
来源
TAMKANG JOURNAL OF MATHEMATICS | 2006年 / 37卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Periodic ring; weakly periodic ring; weakly periodic-like ring; potent element; commutator ideal; Jacobson radical; semisimple ring; primitive ring; subdirect sum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called periodic if, for every x in R, there exist distinct positive integers m and n such that x(m) = x(n). An element x of R is called potent if x(k) = x for some integer k > 1. A ring R is called weakly periodic if every x in R can be written in the form x = a + b for some nilpotent element a and some potent element b in R. A ring R is called weakly periodic-like if every element x in R which is not in the center C of R can be written in the form x = a + b, with a nilpotent and b potent. Some structure and commutativity theorems are established for weakly periodic-like rings R satisfying certain torsion-freeness hypotheses along with conditions involving some elements being central.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 50 条
  • [1] Weakly periodic-like rings and commutativity
    Yaqub, Adil
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2006, 43 (03) : 275 - 284
  • [2] On weakly periodic-like rings and commutativity
    Yaqub A.
    Results in Mathematics, 2006, 49 (3-4) : 377 - 386
  • [3] Commutativity theorems in rings with involution
    Nejjar, B.
    Kacha, A.
    Mamouni, A.
    Oukhtite, L.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (02) : 698 - 708
  • [4] SOME COMMUTATIVITY THEOREMS FOR RINGS
    GIRI, RD
    DHOBLE, AR
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1992, 41 (1-2): : 35 - 40
  • [5] SOME COMMUTATIVITY THEOREMS FOR RINGS AND NEAR RINGS
    LIGH, S
    LUH, J
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 28 (1-2): : 19 - 23
  • [6] Rich and Periodic-Like Words
    Bucci, Michelangelo
    de Luca, Aldo
    De Luca, Alessandro
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2009, 5583 : 145 - 155
  • [7] Two theorems on the commutativity of arbitrary rings
    Fu, CL
    Yang, XS
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (01): : 133 - 140
  • [8] COMMUTATIVITY STUDY FOR PERIODIC RINGS
    BELL, HE
    PACIFIC JOURNAL OF MATHEMATICS, 1977, 70 (01) : 29 - 36
  • [9] COMMUTATIVITY RESULTS FOR PERIODIC RINGS
    ABUKHUZAM, H
    ACTA MATHEMATICA HUNGARICA, 1991, 58 (3-4) : 273 - 277
  • [10] COMMUTATIVITY OF π-STRONGLY PERIODIC RINGS
    Nasirifar, Saeed
    Sabet, Shaban Ali Safari
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 47 (02): : 121 - 134