A Note on the QMLE Limit Theory in the Non-stationary ARCH(1) Model

被引:2
|
作者
Arvanitis, Stelios [1 ]
Louka, Alexandros [1 ]
机构
[1] Athens Univ Econ & Business, Dept Econ, POB 10434,Patision Str 80, Athens, Greece
关键词
alpha-stable distribution; slow variation; domain of attraction; MLT with mixed limit; non-stationary ARCH(1); QMLE; inconsistency; non-tightness;
D O I
10.1515/jtse-2014-0034
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this note we extend the standard results for the limit theory of the popular quasi-maximum likelihood estimator (QMLE) in the context of the non-stationary autoregressive conditional heteroskedastic ARCH(1) model by allowing the innovation process not to possess fourth moments. Depending on the value of the index of stability, we either derive a-stable weak limits with nonstandard rates or inconsistency and non-tightness. We obtain the limit theory by the derivation of a limit theorem for multiplicative "martingale" transforms with limit mixtures of alpha-stable distributions for any alpha is an element of(0, 2].
引用
收藏
页码:21 / 39
页数:19
相关论文
共 50 条
  • [1] Stable limit theory for the Gaussian QMLE in a non-stationary asymmetric GARCH model
    Arvanitis, Stelios
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 145 : 166 - 172
  • [2] Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model
    Arvanitis, Stelios
    Louka, Alexandros
    [J]. ECONOMICS LETTERS, 2017, 161 : 135 - 137
  • [3] Restricted normal mixture QMLE for non-stationary TGARCH(1, 1) models
    Hui Wang
    JiaZhu Pan
    [J]. Science China Mathematics, 2014, 57 : 1341 - 1360
  • [4] Limit Theory for the QMLE of the GQARCH (1,1) Model
    Arvanitis, Stelios
    Louka, Alexandros
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (17) : 3549 - 3575
  • [5] A NOTE ON NON-STATIONARY SUPERSONIC WING THEORY
    STEWART, HJ
    [J]. PHYSICAL REVIEW, 1949, 76 (06): : 882 - 882
  • [6] Restricted normal mixture QMLE for non-stationary TGARCH(1,1) models
    WANG Hui
    PAN JiaZhu
    [J]. Science China Mathematics, 2014, 57 (07) : 1341 - 1360
  • [7] Restricted normal mixture QMLE for non-stationary TGARCH(1,1) models
    Wang Hui
    Pan JiaZhu
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1341 - 1360
  • [8] A note on a non-stationary point source spatial model
    Mark D. Ecker
    Victor De Oliveira
    Hans Isakson
    [J]. Environmental and Ecological Statistics, 2013, 20 : 59 - 67
  • [9] A note on a non-stationary point source spatial model
    Ecker, Mark D.
    De Oliveira, Victor
    Isakson, Hans
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (01) : 59 - 67
  • [10] Non-stationary lognormal model development and comparison with the non-stationary GEV model
    Aissaoui-Fqayeh, I.
    El-Adlouni, S.
    Ouarda, T. B. M. J.
    St-Hilaire, A.
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2009, 54 (06): : 1141 - 1156