Linear Scalarization in Multi-Criterion Optimization

被引:9
|
作者
Noghin, V. D. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
linear scalarization; weighted sum; multi-criterion optimization; Pareto set; Edgeworth-Pareto principle;
D O I
10.3103/S014768821506009X
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
The well-known linear scalarization of criteria is considered from the point of the general model of multi-criterion choice, which includes a set of feasible alternatives and a vector criterion, as well as the preference relation of the decision maker. The focus of this paper is the correctness of the application of this method for solving multi-criterion problems. A class of problems is analyzed where the use of linear scalarization can be justified. Moreover, a combined approach is proposed for solving multi-criterion problems, which consists in prior reduction of the Pareto set based on information regarding the decision maker's preference relation with subsequent extremization of the linear combination of the initial criteria on the reduced set.
引用
收藏
页码:463 / 469
页数:7
相关论文
共 50 条
  • [1] Multi-criterion approaches to optimization of linear regulators
    Rew, D.W.
    Junkins, J.L.
    [J]. Journal of the Astronautical Sciences, 1988, 36 (03): : 199 - 217
  • [2] MULTI-CRITERION APPROACHES TO OPTIMIZATION OF LINEAR REGULATORS
    REW, DW
    JUNKINS, JL
    [J]. JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1988, 36 (03): : 199 - 217
  • [3] MULTI-CRITERION OPTIMIZATION OF SPINDLE UNITS
    PUSH, A
    [J]. SOVIET ENGINEERING RESEARCH, 1987, 7 (04): : 57 - 62
  • [4] Multi-Criterion Optimization of a Pneumatic Vibroinsulation System
    D. Bestle
    A. Wachal
    [J]. Multibody System Dynamics, 2005, 13 : 39 - 52
  • [5] Multi-criterion optimization for genetic network modeling
    van Someren, EP
    Wessels, LFA
    Backer, E
    Reinders, MJT
    [J]. SIGNAL PROCESSING, 2003, 83 (04) : 763 - 775
  • [6] Multi-criterion optimization of a pneumatic vibroinsulation system
    Bestle, D
    Wachal, A
    [J]. MULTIBODY SYSTEM DYNAMICS, 2005, 13 (01) : 39 - 52
  • [7] Recent Advances in Evolutionary Multi-Criterion Optimization (EMO)
    Deb, Kalyanmoy
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 702 - 735
  • [8] Target Level Method in Linear Multi-Criterion Problems
    S. Yu. Churkina
    Yu. D. Zabrodin
    [J]. Computational Mathematics and Modeling, 2003, 14 (2) : 173 - 182
  • [9] MULTISTAGE HIERARCHICAL OPTIMIZATION PROBLEMS WITH MULTI-CRITERION OBJECTIVES
    Zhang, Roxin
    Truong, Bao
    Zhang, Qinghong
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 103 - 115
  • [10] Multi-criterion optimization functional trajectories of industrial robots
    Bezuglenko, A.
    Gutyrya, S.
    Yaglinsky, V.
    [J]. Annals of DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, : 37 - 38