EXTENSION OF AN INEQUALITY OF H. ALZER FOR NEGATIVE POWERS

被引:8
|
作者
Chen, Chao-Ping [1 ]
Qi, Feng [1 ]
机构
[1] Jiaozuo Inst Technol, Dept Appl Math & Informat, 142 Mid Jiefang Rd, Jiaozuo City 454000, Henan, Peoples R China
来源
TAMKANG JOURNAL OF MATHEMATICS | 2005年 / 36卷 / 01期
关键词
Inequality; power mean; Lagrange's mean value theorem; mathematical indution;
D O I
10.5556/j.tkjm.36.2005.137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that let n be a natural number, then for all real numbers r, n/n+1 < (1/n Sigma(n)(i=1) i(r) / 1/n + 1 Sigma(n+1)(i=1) i(r) )(1/r) < 1. Both bounds are best possible. This extends a result of H. Alzer, who established this inequality for r > 0
引用
收藏
页码:69 / 72
页数:4
相关论文
共 50 条
  • [1] Extension of an inequality of H. Alzer
    Chen, Chao-Ping
    Qi, Feng
    [J]. MATHEMATICAL GAZETTE, 2006, 90 (518): : 293 - 295
  • [2] GENERALIZATION OF AN INEQUALITY OF ALZER FOR NEGATIVE POWERS
    Chen, Chao-Ping
    Qi, Feng
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 219 - 222
  • [3] Generalization of H. Alzer's inequality
    Qi, F
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) : 294 - 297
  • [4] ON A KY FAN TYPE INEQUALITY DUE TO H. ALZER
    Rooin, Jamal
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 487 - 493
  • [5] A multivariate extension of an inequality of Brenner–Alzer
    Allal Guessab
    Otheman Nouisser
    Josip Pečarić
    [J]. Archiv der Mathematik, 2012, 98 : 277 - 287
  • [6] ON A QUESTION OF ALZER,H.
    CHEN, WY
    [J]. ARCHIV DER MATHEMATIK, 1994, 62 (04) : 315 - 320
  • [7] A multivariate extension of an inequality of Brenner-Alzer
    Guessab, Allal
    Nouisser, Otheman
    Pecaric, Josip
    [J]. ARCHIV DER MATHEMATIK, 2012, 98 (03) : 277 - 287
  • [8] ON AN INEQUALITY OF ALZER
    SANDOR, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (03) : 1034 - 1035
  • [9] On Alzer's inequality
    Elezovic, N
    Pecaric, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) : 366 - 369
  • [10] NOTE ON ALZER'S INEQUALITY
    Chen, Chao-Ping
    Qi, Feng
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2006, 37 (01): : 11 - 14