ON THE DIOPHANTINE EQUATION y(2) = px(Ax(2) - 2)

被引:0
|
作者
Yuan, Pingzhi [1 ]
Li, Yuan [2 ]
机构
[1] South China Normal Univ, Sch Math, Guangzhou 510631, Peoples R China
[2] Winston Salem State Univ, Math Dept, Winston Salem, NC 27110 USA
关键词
Diophantine equations; Lehmer sequences;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cassels [5] gave all positive integer solutions to the Diophantine equation y(2) = 3x(x(2) + 2). In this paper, we prove an extension of Cassels' theorem by showing that for any prime p and odd positive integer A, the equation y(2) = px(Ax(2) -2) has at most five solutions in positive integers (x, y).
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [1] A note on the Diophantine equation y(2) = px (Ax(2) +2)
    Togbe, Alain
    AFRIKA MATEMATIKA, 2014, 25 (03) : 739 - 744
  • [2] ON THE DIOPHANTINE EQUATION 2(N)+PX(2)=Y(P)
    LE, MH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (02) : 321 - 326
  • [3] ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION (PX) = (2Y)
    KISS, P
    FIBONACCI QUARTERLY, 1988, 26 (02): : 127 - 130
  • [4] ON THE DIOPHANTINE EQUATION AX(2)-BY(2)=C
    GRELAK, A
    GRYTCZUK, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1994, 44 (3-4): : 291 - 299
  • [5] UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS FOR THE DIOPHANTINE EQUATION y2 = px(Ax2 - C) (C=2, ±1, ±4)
    Bencherif, Farid
    Boumahdi, Rachid
    Garici, Tarek
    Schedler, Zak
    COLLOQUIUM MATHEMATICUM, 2020, 159 (02) : 243 - 257
  • [6] THE NUMBER OF SOLUTIONS TO y(2) = px(Ax(2)+2)
    Garici, Tarek
    Kihel, Omar
    Larone, Jesse
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 104 (118): : 149 - 156
  • [7] On the diophantine equation ax2+by2 = ckn
    Yuan, PZ
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (02): : 301 - 320
  • [8] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [9] DIOPHANTINE EQUATION Y2=AX3+BX2+CX+D
    BAKER, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (169P): : 1 - &
  • [10] ON THE DIOPHANTINE EQUATION ax + by = (a+2)z
    Miyazaki, T.
    Togbe, A.
    Yuan, P.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) : 1 - 9