PAIRWISE BALANCED DESIGNS WITH BLOCK SIZES 5T + 1

被引:0
|
作者
MIAO, Y
ZHU, L
机构
[1] SUZHOU INST SILK TEXT TECHNOL,MATH TEACHING RES SECT,SUZHOU 215005,PEOPLES R CHINA
[2] SUZHOU UNIV,DEPT MATH,SUZHOU 215006,PEOPLES R CHINA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct pairwise balanced designs (PBDs) having block sizes which are prime powers congruent to 1 modulo 5 together with 6. Such a PBD contains n = 5 r + 1 points, for some positive integer r. We show that this condition is sufficient for n greater-than-or-equal-to 1201, with at most 74 possible exceptions below this value. As an application, we prove that there exists an almost resolvable BIB design with n points and block size five whenever n greater-than-or-equal-to 991, with at most 26 possible exceptions below this value.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 50 条
  • [1] PAIRWISE BALANCED DESIGNS WITH BLOCK SIZES 6T + 1
    MULLIN, RC
    STINSON, DR
    GRAPHS AND COMBINATORICS, 1987, 3 (04) : 365 - 377
  • [2] BLOCK SIZES IN PAIRWISE BALANCED DESIGNS
    COLBOURN, CJ
    PHELPS, KT
    RODL, V
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (03): : 375 - 380
  • [3] PAIRWISE BALANCED DESIGNS WITH ODD BLOCK SIZES EXCEEDING 5
    MULLIN, RC
    STINSON, DR
    DISCRETE MATHEMATICS, 1990, 84 (01) : 47 - 62
  • [4] Pairwise balanced designs with consecutive block sizes
    Ling, Alan C.H.
    Zhu, Xiaojun
    Colbourn, Charles J.
    Mullin, Ronald C.
    Designs, Codes, and Cryptography, 1997, 10 (02):
  • [5] Pairwise Balanced Designs with Consecutive Block Sizes
    Ling A.C.H.
    Zhu X.
    Colbourn C.J.
    Mullin R.C.
    Designs, Codes and Cryptography, 1997, 10 (2) : 203 - 222
  • [6] PAIRWISE BALANCED DESIGNS WITH BLOCK SIZES 3 AND 4
    COLBOURN, CJ
    ROSA, A
    STINSON, DR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (04): : 673 - 704
  • [7] Pairwise balanced designs with block sizes 8, 9, and 10
    Colbourn, CJ
    Ling, ACH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (02) : 228 - 245
  • [8] Super-simple pairwise balanced designs with block sizes 3 and 4
    Chen, Guangzhou
    Zhang, Yong
    Chen, Kejun
    DISCRETE MATHEMATICS, 2017, 340 (02) : 236 - 242
  • [9] PAIRWISE AND VARIANCE BALANCED INCOMPLETE BLOCK DESIGNS
    HEDAYAT, A
    FEDERER, WT
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1974, 26 (02) : 331 - 338
  • [10] Variance balanced block designs with unequal block sizes
    Gupta, VK
    Parsad, R
    Das, A
    UTILITAS MATHEMATICA, 2003, 64 : 183 - 192