Adaptive model based on polarimetric decomposition using correlation coefficient in horizontal-vertical and circular basis

被引:0
|
作者
Latrache, Houda [1 ]
Ouarzeddine, Mounira [1 ]
Souissi, Boularbah [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Elect & Comp Sci, Image Proc & Radiat Lab, Algiers, Algeria
关键词
polarimetric decomposition; Pauli component; correlation coefficient; polarimetric synthetic aperture radar; polarimetric interferometric synthetic aperture radar; scattering powers;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents two decomposition schemes for polarimetric synthetic aperture radar data. The proposed schemes intend to overcome the problem of scattering ambiguity and reduce the volume scattering power in oriented urban areas. The first proposed scheme uses an empirical volume model based on the correlation coefficients of the Pauli component in the horizontal-vertical basis, whereas the second one employs a volume model defined on correlation coefficients of the Pauli components expressed in the circular basis. The correlation coefficients are calculated from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The characteristics adopted from these volume models are used to enhance the results of the decomposition schemes. The scattering powers estimated from the proposed methods give promising results compared to existing methods in the literature, particularly in urban areas since all the oriented built-up areas are well discriminated as double or odd bounce scattering. The methods are evaluated using the experimental airborne SAR sensor (E-SAR) PolInSAR L band data acquired on the Oberpfaffenhofen test site in Germany. (C) 2017 Society of Photo-OpticalInstrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Adaptive model based on polarimetric decomposition using correlation coefficient in horizontal-vertical and circular basis
    Latrache, Houda
    Ouarzeddine, Mounira
    Souissi, Boularbah
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [2] ADAPTIVE MODEL-BASED POLARIMETRIC DECOMPOSITION USING CORRELATION COEFFICIENT
    Latrache, H.
    Ouarzeddine, M.
    Souissi, B.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4726 - 4729
  • [3] Urban Construction Area Extraction Using Circular Polarimetric Correlation Coefficient
    Lin Xiaoxia
    Wang Wenguang
    Yang Erfu
    2013 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2013), 2013, : 359 - 362
  • [4] Adaptive Model-Based Polarimetric Decomposition Using PolInSAR Coherence
    Chen, Si-Wei
    Wang, Xue-Song
    Li, Yong-Zhen
    Sato, Motoyuki
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1705 - 1718
  • [5] Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices
    Arii, Motofumi
    van Zyl, Jakob J.
    Kim, Yunjin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03): : 1104 - 1113
  • [6] ADAPTIVE MODEL-BASED SCATTERING DECOMPOSITION OF POLARIMETRIC SAR INTERFEROMETRY
    Xu Liying
    Li Shiqiang
    Deng Yunkai
    Robert Wang
    Journal of Electronics(China), 2013, 30 (05) : 463 - 468
  • [7] Modeling of mass transfer coefficient using response surface methodology in a horizontal-vertical pulsed sieve-plate extraction column
    Ardestani, Fatemeh
    Ghaemi, Ahad
    Safdari, Jaber
    Hemmati, Alireza
    Progress in Nuclear Energy, 2021, 139
  • [8] Modeling of mass transfer coefficient using response surface methodology in a horizontal-vertical pulsed sieve-plate extraction column
    Ardestani, Fatemeh
    Ghaemi, Ahad
    Safdari, Jaber
    Hemmati, Alireza
    PROGRESS IN NUCLEAR ENERGY, 2021, 139
  • [9] MODEL-BASED POLARIMETRIC DECOMPOSITION USING POLINSAR COHERENCE
    Chen, Si-Wei
    Sato, Motoyuki
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1087 - 1090
  • [10] Soil Moisture Retrieval in Agricultural Fields Using Adaptive Model-Based Polarimetric Decomposition of SAR Data
    He, Lian
    Panciera, Rocco
    Tanase, Mihai A.
    Walker, Jeffrey P.
    Qin, Qiming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4445 - 4460