AN ITERATIVE METHOD OF GLOBAL CONVERGENCE WITHOUT DERIVATIVES IN THE CLASS OF SMOOTH FUNCTIONS

被引:0
|
作者
ZHANG, JG [1 ]
机构
[1] SICHUAN NORMAL UNIV,DEPT MATH,CHENGDU,PEOPLES R CHINA
关键词
ORDER OF CONVERGENCE; DIFFERENCE QUOTIENT; REMAINDER TERM; GLOBAL CONVERGENCE;
D O I
10.1016/0377-0427(92)90015-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the class of smooth functions, the iterative methods using only first-order derivatives or values of f are established by the idea introducing a parametric function and making the global estimate for the interpolating remainder. These methods are globally convergent and contain a real parameter lambda (greater-than-or-equal-to 0). When 0 less-than-or-equal-to lambda less-than-or-equal-to 1, the order of convergence of the methods is 1 + lambda for a simple real zero of f(x), and 1 for a multiple real zero. When 1 < lambda, these methods are only linearly convergent for any real zero of f(x).
引用
收藏
页码:273 / 289
页数:17
相关论文
共 50 条