SOME SETS OF AMICABLE NUMBERS OF HIGHER-ORDER

被引:0
|
作者
KRISHNAMURTHY, C
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1549 / 1553
页数:5
相关论文
共 50 条
  • [1] Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers
    Liu, Guo-Dong
    Srivastava, H. M.
    Wang, Hai-Qing
    [J]. JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)
  • [2] HIGHER-ORDER OPTIMALITY CONDITIONS AND HIGHER-ORDER TANGENT SETS
    Penot, Jean-Paul
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (04) : 2508 - 2527
  • [3] Higher-order Nielsen numbers
    Saveliev, Peter
    [J]. FIIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (01): : 47 - 66
  • [4] Higher-order Carmichael numbers
    Howe, EW
    [J]. MATHEMATICS OF COMPUTATION, 2000, 69 (232) : 1711 - 1719
  • [5] Higher-order Fibonacci numbers
    Randic, M
    Morales, DA
    Araujo, O
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1996, 20 (1-2) : 79 - 94
  • [6] Higher-order Nielsen numbers
    Peter Saveliev
    [J]. Fixed Point Theory and Applications, 2005
  • [7] SOME IDENTITIES ON THE GENERALIZED HIGHER-ORDER EULER AND BERNOULLI NUMBERS
    Wang, Nianliang
    Li, Chao
    Li, Hailong
    [J]. ARS COMBINATORIA, 2011, 102 : 517 - 528
  • [8] Some identities on degenerate harmonic and degenerate higher-order harmonic numbers
    Kim, Taekyun
    Kim, Dae San
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 486
  • [9] Higher-order identities for balancing numbers
    Komatsu, Takao
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (02) : 71 - 84
  • [10] HIGHER-ORDER IDENTITIES FOR FIBONACCI NUMBERS
    Komatsu, Takao
    Masakova, Zuzana
    Pelantova, Edita
    [J]. FIBONACCI QUARTERLY, 2014, 52 (05): : 150 - 163