RICE THEOREM FOR THE LIMIT-SETS OF CELLULAR-AUTOMATA

被引:65
|
作者
KARI, J
机构
[1] Mathematics Department, University of Turku
关键词
Cellular arrays - Function evaluation;
D O I
10.1016/0304-3975(94)90041-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Rice's theorem is a well-known result in the theory of recursive functions, A corresponding theorem for cellular automata limit sets is proved: All nontrivial properties of limit sets of cellular automata (CAs) are shown undecidable. The theorem remains valid even if only one-dimensional CAs are considered.
引用
收藏
页码:229 / 254
页数:26
相关论文
共 50 条
  • [1] ON THE SOFIC LIMIT-SETS OF CELLULAR-AUTOMATA
    MAASS, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 663 - 684
  • [2] ON THE LIMIT-SETS OF CELLULAR AUTOMATA
    CULIK, K
    PACHL, J
    YU, S
    SIAM JOURNAL ON COMPUTING, 1989, 18 (04) : 831 - 842
  • [3] Rice's Theorem for μ-Limit Sets of Cellular Automata
    Delacourt, Martin
    Automata, Languages and Programming, ICALP, Pt II, 2011, 6756 : 89 - 100
  • [4] Nilpotency and limit sets of cellular automata
    Guillon, Pierre
    Richard, Gaetan
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2008, PROCEEDINGS, 2008, 5162 : 375 - +
  • [5] Limit sets of stable cellular automata
    Ballier, Alexis
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 673 - 690
  • [6] ON OSCILLATIONS IN CELLULAR-AUTOMATA
    HEMMINGSSON, J
    HERRMANN, HJ
    EUROPHYSICS LETTERS, 1993, 23 (01): : 15 - 19
  • [7] REVISITING THE RICE THEOREM OF CELLULAR AUTOMATA
    Guillon, Pierre
    Richard, Gaetan
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 441 - 451
  • [8] DIVISIBILITY AND CELLULAR-AUTOMATA
    CRESPO, CC
    PONTEVILLE, C
    DESPINADEL, VW
    CHAOS SOLITONS & FRACTALS, 1995, 6 (Suppl) : 105 - &
  • [9] FOLIATIONS WITH ALGEBRAIC LIMIT-SETS
    CAMACHO, C
    NETO, AL
    SAD, P
    ANNALS OF MATHEMATICS, 1992, 136 (02) : 429 - 446
  • [10] LIMIT-SETS OF MULTIVALUED MAPPINGS
    OGANESIAN, ZS
    DOKLADY AKADEMII NAUK SSSR, 1984, 275 (06): : 1313 - 1316