TESTING FOR PARAMETER VARIATION IN NONLINEAR-REGRESSION MODELS

被引:0
|
作者
MCCABE, BPM
LEYBOURNE, SJ
机构
[1] UNIV NOTTINGHAM,DEPT ECON,UNIV PK,NOTTINGHAM NG7 2RD,ENGLAND
[2] UNIV BRITISH COLUMBIA,VANCOUVER V6T 1W5,BC,CANADA
关键词
LOCAL POWER; NONLINEAR LEAST SQUARES; NONLINEAR REGRESSION MODEL; PARAMETER VARIATION; SCORE TEST;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the problem of testing for purely random parameter variation in non-linear regression models. Based on different approximations to the true density of the data, score-type tests are constructed and their asymptotic distributions are derived. The local power of the tests is investigated both theoretically and via Monte Carlo simulation. An empirical testing example, involving a well-known non-linear aggregate demand for money function, is also given.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条