PRECOMPACTNESS IN THE UNIFORM ERGODIC-THEORY

被引:0
|
作者
LYUBICH, Y [1 ]
ZEMANEK, J [1 ]
机构
[1] POLISH ACAD SCI,INST MATH,PL-00950 WARSAW,POLAND
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the Banach space operators T whose arithmetic means {n(-1)(I+T+...+T-n-1)}(n greater than or equal to 1) form a precompact set in the operator norm topology. This occurs if and only if the sequence {n(-1)T(n)}(n greater than or equal to 1) is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条