We suggest that the companion winds, excited by the radiation from the neutron star in PSR 1957 + 20 form only through the combined action of the radiation heat on the companion's atmosphere and the radiation force on the slowly lifting wind. Ballistic simulations suggest that these winds leave only from selected areas on the illuminated surface of the companion; surface currents channel into these regions relatively hot (but altogether cooler than the companion escape velocity) "coronal" matter from the whole illuminated area. Under suitable conditions, wind particles spend some time trailing the companion at close distances before taking off to escape from the system. This can torque the binary into angular momentum loss that will be as efficient as the one recently observed in PSR 1957 + 20 if the companion is bloated to dimensions close to that of the Roche lobe.