ISOPERIMETRIC PROBLEMS IN THE VARIATIONAL CALCULUS OF EULER AND LAGRANGE

被引:8
|
作者
FRASER, CG [1 ]
机构
[1] UNIV TORONTO,VICTORIA COLL,INST HIST & PHILOSOPHY SCI & TECHNOL,TORONTO M5S 1K7,ONTARIO,CANADA
关键词
HISTORY OF ANALYSIS; CALCULUS OF VARIATIONS; ISOPERIMETRIC PROBLEM; EULER RULE; LAGRANGE MULTIPLIER; PROBLEM OF LAGRANGE;
D O I
10.1016/0315-0860(92)90052-D
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Historians have documented the main development of the calculus of variations in the 18th century. Although we have a clear overall picture of this subject there is in the literature no connected historical account of the more specialized research carried out during the period on problems of extremization under constraint. Concentrating on the work of Leonhard Euler and Joseph Louis Lagrange between 1738 and 1806, the present study attempts to identify and draw together the different threads that make up this story. © 1992.
引用
收藏
页码:4 / 23
页数:20
相关论文
共 50 条
  • [1] The Second Euler-Lagrange Equation of Variational Calculus on Time Scales
    Bartosiewicz, Zbigniew
    Martins, Natalia
    Torres, Delfim F. M.
    EUROPEAN JOURNAL OF CONTROL, 2011, 17 (01) : 9 - 18
  • [2] Generalized Euler-Lagrange equations for fuzzy fractional variational calculus
    Soolaki, Javad
    Fard, Omid Solaymani
    Borzabadi, Akbar Hashemi
    Mathematical Communications, 2016, 21 (02) : 199 - 218
  • [3] The validity of the Euler–Lagrange equation for solutions to variational problems
    Arrigo Cellina
    Journal of Fixed Point Theory and Applications, 2014, 15 : 577 - 586
  • [4] Generalized Variational Problems and Euler-Lagrange equations
    Agrawal, Om Prakash
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1852 - 1864
  • [5] Generalized Euler–Lagrange equations for fuzzy variational problems
    Soolaki J.
    Fard O.S.
    Borzabadi A.H.
    SeMA Journal, 2016, 73 (2) : 131 - 148
  • [6] Formalization of Euler–Lagrange Equation Set Based on Variational Calculus in HOL Light
    Guan, Yong
    Zhang, Jingzhi
    Wang, Guohui
    Li, Ximeng
    Shi, Zhiping
    Li, Yongdong
    Journal of Automated Reasoning, 2020,
  • [7] Formalization of Euler–Lagrange Equation Set Based on Variational Calculus in HOL Light
    Yong Guan
    Jingzhi Zhang
    Guohui Wang
    Ximeng Li
    Zhiping Shi
    Yongdong Li
    Journal of Automated Reasoning, 2021, 65 : 1 - 29
  • [8] Formulation of Euler-Lagrange equations for fractional variational problems
    Agrawal, OP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 368 - 379
  • [9] Generalized Euler–Lagrange Equations for Variational Problems with Scale Derivatives
    Ricardo Almeida
    Delfim F. M. Torres
    Letters in Mathematical Physics, 2010, 92 : 221 - 229
  • [10] Euler-Lagrange equations for variational problems on space curves
    Hornung, Peter
    PHYSICAL REVIEW E, 2010, 81 (06):