EIGENVALUES FOR THE QUANTUM PARAMETRIC OSCILLATOR IN THE OVERDAMPED REGIME

被引:7
|
作者
MORTIMER, IK [1 ]
RISKEN, H [1 ]
机构
[1] UNIV ULM, W-7900 ULM, GERMANY
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 01期
关键词
DISPERSIVE OPTICAL BISTABILITY; TUNNELING RATES;
D O I
10.1103/PhysRevA.44.617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By an adiabatic elimination of the fundamental mode, the equation of motion for the density operator describing the model of Drummond, McNeil, and Walls [Opt. Acta 28, 211 (1981)] of the quantum parametric oscillator can be reduced to an equation of motion for the subharmonic field for large damping constants of the second-harmonic field. Introducing the quasiprobability distributions of Cahill and Glauber [Phys. Rev. 177, 1882 (1969)], it is shown next that the equation of motion for the density operator is reduced to an equation of motion of the quasiprobability distributions. Because of symmetry relations the eigenfunctions can be divided into four classes according to whether the eigenfunctions are symmetric or antisymmetric in the real or imaginary part of the complex field variable. By using intensity and phase variables, the quasiprobability distributions are then expanded into Laguerre functions with respect to the intensity and into a Fourier series with respect to the phase. With a proper notation the equation of motion for the expansion coefficients can be cast into a tridiagonal recurrence relation, which is then solved by the matrix continued-fraction method. The results are compared with one-dimensional approximations.
引用
收藏
页码:617 / 627
页数:11
相关论文
共 50 条
  • [1] Quantum Smoluchowski equation II: The overdamped harmonic oscillator
    Pechukas, P
    Ankerhold, J
    Grabert, H
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (28): : 6638 - 6641
  • [2] QUANTUM DYNAMICS OF THE PARAMETRIC OSCILLATOR
    KINSLER, P
    DRUMMOND, PD
    PHYSICAL REVIEW A, 1991, 43 (11): : 6194 - 6208
  • [3] PARAMETRIC EXCITATION OF A QUANTUM OSCILLATOR
    POPOV, VS
    PERELOMO.AM
    SOVIET PHYSICS JETP-USSR, 1969, 29 (04): : 738 - &
  • [4] ENERGY EIGENVALUES OF A QUANTUM ANHARMONIC-OSCILLATOR
    FANELLI, R
    STRUZYNSKI, RE
    AMERICAN JOURNAL OF PHYSICS, 1983, 51 (06) : 561 - 564
  • [5] Nonlinear power dependence of the spectral properties of an optical parametric oscillator below threshold in the quantum regime
    Shafiee, Golnoush
    Strekalov, Dmitry, V
    Otterpohl, Alexander
    Sedlmeir, Florian
    Schunk, Gerhard
    Vogl, Ulrich
    Schwefel, Harald G. L.
    Leuchs, Gerd
    Marquardt, Christoph
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [6] Cooling of a Micromechanical Oscillator into the Quantum Regime
    Weis, S.
    Riviere, R.
    Deleglise, S.
    Verhagen, E.
    Gavartin, E.
    Arcizet, O.
    Schliesser, A.
    Kippenberg, T. J.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [7] PHASE RELAXATION OF QUANTUM PARAMETRIC OSCILLATOR
    FANCHENKO, SS
    DOKLADY AKADEMII NAUK SSSR, 1987, 292 (02): : 351 - 353
  • [8] CRITICAL FLUCTUATIONS IN THE QUANTUM PARAMETRIC OSCILLATOR
    KINSLER, P
    DRUMMOND, PD
    PHYSICAL REVIEW A, 1995, 52 (01): : 783 - 790
  • [9] Quantum Parametric Oscillator with Trapped Ions
    Ding, Shiqian
    Maslennikov, Gleb
    Habltzel, Roland
    Loh, Huanqian
    Matsukevich, Dzmitry
    PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [10] Quantum theory of an atomic parametric oscillator
    Ananikian, NS
    Petrosyan, KG
    PHYSICS LETTERS A, 1997, 236 (1-2) : 84 - 88