A BOOTSTRAP ALGORITHM FOR THE ISOTROPIC RANDOM SPHERE

被引:0
|
作者
BROWN, JJ [1 ]
机构
[1] UNIV MISSOURI,COLUMBIA,MO
关键词
BOOTSTRAP; SAMPLING PLAN; ISOTROPIC RANDOM FIELD; SPHERE;
D O I
10.2307/1428127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X(?((p) over right arrow)} be a real-valued, homogeneous, and isotropic random field indexed in R(3). When restricted to those indices (p) over right arrow with \\(p) over right arrow\\ the Euclidean length of (p) over right arrow, equal to r (a positive constant), then the random field {X((p) over right arrow)} resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Brown (1993a)) P on the sphere, define {X<((p)over) (right) (arrow)>:(p) over right arrow is an element of P} to be a realization of the random process and \P\ to be the cardinality of P. A bootstrap algorithm is presented and conditions for strong uniform consistency of the bootstrap cumulative distribution function of the standardized sample mean, \P\(-1/2)Sigma((p) over right arrow) (<is an) (element) (of)>) (P)(X((p) over right arrow)-E{X(<(p)over (arrow) (right) (arrow)>))}, are given. We illustrate the bootstrap algorithm with global land-area data.
引用
收藏
页码:627 / 641
页数:15
相关论文
共 50 条
  • [1] Needlet approximation for isotropic random fields on the sphere
    Le Gia, Quoc T.
    Sloan, Ian H.
    Wang, Yu Guang
    Womersley, Robert S.
    JOURNAL OF APPROXIMATION THEORY, 2017, 216 : 86 - 116
  • [2] Modeling Gaussian isotropic random fields on a sphere
    Kozachenko Yu.V.
    Kozachenko L.F.
    Journal of Mathematical Sciences, 2001, 107 (2) : 3751 - 3757
  • [3] Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere
    Christian Lantuéjoul
    Xavier Freulon
    Didier Renard
    Mathematical Geosciences, 2019, 51 : 999 - 1020
  • [4] Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere
    Lantuejoul, Christian
    Freulon, Xavier
    Renard, Didier
    MATHEMATICAL GEOSCIENCES, 2019, 51 (08) : 999 - 1020
  • [5] A tree algorithm for isotropic finite elements on the sphere
    Bauer, F
    Freeden, W
    Schreiner, M
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (01) : 1 - 24
  • [6] Fast generation of isotropic Gaussian random fields on the sphere
    Creasey, Peter E.
    Lang, Annika
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (01): : 1 - 11
  • [7] Quadratic variations for Gaussian isotropic random fields on the sphere
    Shevchenko, Radomyra
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2241 - 2262
  • [8] Multilevel representations of isotropic Gaussian random fields on the sphere
    Bachmayr, Markus
    Djurdjevac, Ana
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 1970 - 2000
  • [9] A CENTRAL-LIMIT-THEOREM FOR THE ISOTROPIC RANDOM SPHERE
    BROWN, JJ
    ADVANCES IN APPLIED PROBABILITY, 1995, 27 (03) : 642 - 651
  • [10] On the Isotropic Constant of Random Polytopes with Vertices on an lp-Sphere
    Hoerrmann, Julia
    Prochno, Joscha
    Thaele, Christoph
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 405 - 426