A FUNCTIONAL CENTRAL-LIMIT-THEOREM IN DIOPHANTINE APPROXIMATION

被引:2
|
作者
SAMUR, JD
机构
关键词
DIOPHANTINE APPROXIMATION; FUNCTIONAL CENTRAL LIMIT THEOREM; INVARIANCE PRINCIPLE; CONTINUED FRACTION EXPANSION; MIXING RANDOM VARIABLES;
D O I
10.2307/2048555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A functional central limit theorem is proved for the number of solutions (p, q) of the inequality \q-omega - p\ < f(q)q-1, q less-than-or-equal-to n (respectively 0 < q-omega - p < f(q)q-1, q less-than-or-equal-to n) for some functions f having a positive limit.
引用
收藏
页码:901 / 911
页数:11
相关论文
共 50 条