NEUCOMP - A NEURAL-NETWORK COMPILER

被引:1
|
作者
EVANS, DJ
SULAIMAN, MN
机构
[1] Parallel Agorithms Research Centre, Loughborough University of Technology, Leicestershire
关键词
NNSIM; OBJECT-ORIENTED NEURAL NETWORK LANGUAGE; DESIRE NEUNET; NEUCOMP; MULTILAYERED PERCEPTRON; KOHONEN NETWORK; ART NETWORK;
D O I
10.1080/00207169408804312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
NEUCOMP is a Neural Network compiler that compiles the program of a particular NN model written as a list of mathematical specifications (known as NEUCOMP language) and translates it into a chosen target program. The mathematical specifications used are represented by scalar, vector and matrix assignments. The NEUCOMP language is a procedual language for general purpose NN models. It combines with an existing graphical package which can portray the NN architecture and display a graph of the results. The NN models being considered so far are the Multi-layered Perceptron, Kohonen Self-Organizing Network and Adaptive Resonance Theory (ART). The Multi-layered networks use a supervised learning algorithm whilst the Kohonen and ART networks use unsupervised learning.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [1] Solving optimisation problems using NEUCOMP - A neural network compiler
    Evans, DJ
    Sulaiman, MN
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 62 (1-2) : 1 - 21
  • [2] CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network Inferencing
    Dathathri, Roshan
    Saarikivi, Olli
    Chen, Hao
    Laine, Kim
    Lauter, Kristin
    Maleki, Saeed
    Musuvathi, Madanlal
    Mytkowicz, Todd
    [J]. PROCEEDINGS OF THE 40TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '19), 2019, : 142 - 156
  • [3] USING A GENERAL-PURPOSE NEURAL-NETWORK SIMULATION TOOL-NEUCOMP-FOR CHARACTER-RECOGNITION PROBLEMS
    SULAIMAN, MN
    EVANS, DJ
    [J]. JOURNAL OF MICROCOMPUTER APPLICATIONS, 1995, 18 (01): : 65 - 81
  • [4] NEURAL-NETWORK
    UEMURA, K
    [J]. JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY-NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 1995, 42 (07): : 541 - 541
  • [5] Neural-network modeling
    Furrer, D
    Thaler, S
    [J]. ADVANCED MATERIALS & PROCESSES, 2005, 163 (11): : 42 - 46
  • [6] Neural-network superresolution
    Torrieri, D
    Bakhru, K
    [J]. MILCOM 97 PROCEEDINGS, VOLS 1-3, 1997, : 1594 - 1598
  • [7] Neural-network wavefunctions
    Kaitlin McCardle
    [J]. Nature Computational Science, 2022, 2 : 284 - 284
  • [8] NEURAL-NETWORK HEURISTICS
    JOSIN, G
    [J]. BYTE, 1987, 12 (11): : 183 - &
  • [10] Neural-network wavefunctions
    McCardle, Kaitlin
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (05): : 284 - 284