COMPLETENESS OF FINSLER MANIFOLDS

被引:0
|
作者
UDRISTE, C [1 ]
机构
[1] INST POLYTECH GH GHEORGHIU DEJ,DEPT MATH 1,BUCHAREST,ROMANIA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1993年 / 42卷 / 1-2期
关键词
FINSLER MANIFOLDS; CRITERIA FOR COMPLETENESS; WARPED PRODUCTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper analyses some constructions that produce complete Finsler manifolds: 1) Let the Finsler manifolds (M, g(x, y)) and (M,gBAR(x, y)) be given. Then (M,gBAR(x, y)) is complete if (M, g(x, y)) is complete and the tensor field gBAR - g is positive semi-definite. 2) If (M,g(x,y)) is a Finsler manifold and f : M --> R is a proper function then the Finsler manifold (M, g(x,y)+df(x)xdf(x)) is complete. Using this construction we prove that a Finsler manifold which supports a proper function whose differential has bounded relative length is complete. 3) Let the Finsler manifolds (M1, g1 (x1, y1)) and (M2 , g2 (x2, y2)) be given and suppose that f > 0 is a differentiable function on M1. The warped product (M1 x M2, g1 + fg2) is complete if aiid only if (M1, g1 (x1, y1)) and (M2,g2(x2, y2)) are complete.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 50 条
  • [1] COMPLEX FINSLER MANIFOLDS
    FUKUI, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1989, 29 (04): : 609 - 624
  • [2] Sasakian Finsler manifolds
    Yaliniz, Ayse Funda
    Caliskan, Nesrin
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (02) : 319 - 339
  • [3] Generalization of Finsler metrics on the product of Finsler manifolds
    Sadighi, Akbar
    Khatamy, R. Chavosh
    Toomanian, Megerdich
    MATHEMATICAL SCIENCES, 2018, 12 (04) : 243 - 248
  • [4] Generalization of Finsler metrics on the product of Finsler manifolds
    Akbar Sadighi
    R. Chavosh Khatamy
    Megerdich Toomanian
    Mathematical Sciences, 2018, 12 : 243 - 248
  • [5] Finsler almost Blaschke manifolds
    Durán, CE
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 77 - 92
  • [6] Laplacian on Complex Finsler Manifolds
    Jinxiu XIAO 1 Tongde ZHONG 2 Chunhui QIU 2 1 Department of Applied Mathematics
    Chinese Annals of Mathematics(Series B), 2011, 32 (04) : 507 - 520
  • [7] INTRODUCTION TO DIFFUSION ON FINSLER MANIFOLDS
    ANTONELLI, PL
    ZASTAWNIAK, TJ
    MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (4-5) : 109 - 116
  • [8] Heat Flow on Finsler Manifolds
    Ohta, Shin-Ichi
    Sturm, Karl-Theodor
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (10) : 1386 - 1433
  • [9] Conservative semisprays on Finsler manifolds
    Vincze, C
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (3-4): : 555 - 577
  • [10] ON ALMOST SASAKIAN FINSLER MANIFOLDS
    SINHA, BB
    YADAV, RK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1991, 22 (03): : 185 - 192