The rotational dynamics of spin-labelled fatty acids of different chainlengths (9, 10, 12, 14, 16 and 18 C-atoms) and different positions of labelling (5-C, 6-C and 7-C) have been studied in dimyristoylphosphatidylcholine bilayers using EPR spectroscopy. The segmental flexibility at a given label position is found to vary considerably with the length of the lipid chain, when this is less than that of the dimyristoylphosphatidylcholine host lipid. For both the charged and protonated forms of labelled fatty acids with chainlengths of 9, 10, and 12 C-atoms, the spectral anisotropy decreases steadily with decreasing chainlength in fluid phase bilayers. The differences become especially pronounced at the 7-C position of caprylic acid and the 6-C position of nonanoic acid, where the label is located close to the terminal methyl end of the chain. An unusually high degree of motional freedom is found for both these spin-labels, even in gel phase bilayers. There is relatively little effect of chainlength of the labelled fatty acid when this is longer or comparable to that of the host lipid (i.e., for fatty acid chainlengths of 18, 16 and 14 C-atoms), except if the label position is close to the terminal methyl end of the chain. The implications for the heterogeneous lipid chain composition in biological membranes are discussed.