LIE TENSOR PRODUCT MANIFOLDS

被引:0
|
作者
Sato, Hajime [1 ]
Yamaguchi, Keizo [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[2] Hokkaido Univ, Fac Sci, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
Lie tensor product; Cartan connection;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometric structures of parabolic geometries. A parabolic geometry is defined by a parabolic subgroup of a simple Lie group corresponding to a subset of the positive simple roots. We say that a parabolic geometry is fundamental if it is defined by a subset corresponding to a single simple root. In this paper we will be mainly concerned with such fundamental parabolic geometries. Fundamental geometries for the Lie algebra of A(n) type are Grassmann structures. For B-n, C-n, D-n types, we investigate the geometric feature of the fundamental geometries modeled after the quotients of the real simple groups of split type by the parabolic subgroups. We name such geometries Lie tensor product structures. Especially, we call Lie tensor metric structure for B-n or D-n type and Lie tensor symplectic structure for C-n type. For each manifold with a Lie tensor product structure, we give a unique normal Cartan connection by the method due to Tanaka. Invariants of the structure are the curvatures of the connection.
引用
收藏
页码:909 / 927
页数:19
相关论文
共 50 条
  • [1] The tensor product of Lie soluble algebras
    Riley, DM
    ARCHIV DER MATHEMATIK, 1996, 66 (05) : 372 - 377
  • [2] Lie nilpotency and Lie solvability of tensor product of multiplicative Lie algebras
    Pal, Deepak
    Kumar, Amit
    Upadhyay, Sumit Kumar
    Kushwaha, Seema
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) : 1296 - 1306
  • [3] The tensor product in the theory of Frobenius manifolds
    Kaufmann, RM
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (02) : 159 - 206
  • [4] Tensor product representations for orthosymplectic Lie superalgebras
    Benkart, G
    Shader, CYL
    Ram, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (01) : 1 - 48
  • [5] On the triple tensor product of nilpotent Lie algebras
    Shamsaki, Afsaneh
    Niroomand, Peyman
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5879 - 5887
  • [6] A note on the tensor product of Lie soluble algebras
    Catino, F.
    Miccoli, M. M.
    Nuccio, C.
    ARCHIV DER MATHEMATIK, 2007, 89 (01) : 41 - 46
  • [7] A note on the tensor product of Lie soluble algebras
    F. Catino
    M. M. Miccoli
    C. Nuccio
    Archiv der Mathematik, 2007, 89 : 41 - 46
  • [8] TENSOR PRODUCT OF REPRESENTATIONS OF SEMISIMPLE LIE GROUPS
    KLIMYK, AU
    LETTERS IN MATHEMATICAL PHYSICS, 1977, 1 (05) : 375 - 377
  • [9] On the non-abelian tensor product of Lie algebras
    Salemkar, Ali Reza
    Tavallaee, Hamid
    Mohammadzadeh, Hamid
    Edalatzadeh, Behrouz
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 333 - 341
  • [10] Nonabelian Tensor Product of n-Lie Algebras
    Akbarossadat, Seyedeh Nafiseh
    Saeedi, Farshid
    JOURNAL OF LIE THEORY, 2020, 30 (01) : 259 - 276