GENERALIZED MARKOV COARSE GRAINING AND SPECTRAL DECOMPOSITIONS OF CHAOTIC PIECEWISE-LINEAR MAPS

被引:28
|
作者
MACKERNAN, D [1 ]
NICOLIS, G [1 ]
机构
[1] UNIV LIBRE BRUXELLES,CTR NONLINEAR PHENOMENA & COMPLEX SYST,B-1050 BRUSSELS,BELGIUM
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 02期
关键词
D O I
10.1103/PhysRevE.50.988
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spectral decompositions of the evolution operator for probability densities are obtained for the most general one-dimensional piecewise linear Markov maps and a large class of repellers. The eigenvalues obtained with respect to the space of functions piecewise analytic over the minimal Markov partition equal the reciprocals of the zeros of the Ruelle zeta functions. The logarithms of the zeros correspond to the decay rates of time correlation functions of analytic observables when the system is mixing. The space can also be extended to include piecewise analytic observables permitted to have discontinuities at the elements of any given periodic orbit(s), so that local behavior of observables can be considered. The new spectra associated with the extension are surprisingly simple and are related to the relative stability factors of the given orbit(s). Finally, arbitrarily slowly decaying periodic and aperiodic nonanalytic eigenmodes are constructed.
引用
收藏
页码:988 / 999
页数:12
相关论文
共 50 条
  • [1] SPECTRAL DETERMINATION AND PHYSICAL CONDITIONS FOR A CLASS OF CHAOTIC PIECEWISE-LINEAR MAPS
    HASEGAWA, HH
    DRIEBE, DJ
    [J]. PHYSICS LETTERS A, 1993, 176 (3-4) : 193 - 201
  • [2] Optimal estimation of chaotic signals generated by piecewise-linear maps
    Pantaleón, C
    Luengo, D
    Santamaría, I
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (08) : 235 - 237
  • [3] Riddling and chaotic synchronization of coupled piecewise-linear Lorenz maps
    Verges, M. C.
    Pereira, R. F.
    Lopes, S. R.
    Viana, R. L.
    Kapitaniak, T
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2515 - 2525
  • [4] Bayesian estimation of chaotic signals generated by piecewise-linear maps
    Pantaleón, C
    Vielva, L
    Luengo, D
    Santamaría, I
    [J]. SIGNAL PROCESSING, 2003, 83 (03) : 659 - 664
  • [5] Piecewise-linear soliton equations and piecewise-linear integrable maps
    Quispel, GRW
    Capel, HW
    Scully, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2491 - 2503
  • [6] SYNTHESIS OF PIECEWISE-LINEAR CHAOTIC MAPS: INVARIANT DENSITIES, AUTOCORRELATIONS, AND SWITCHING
    Rogers, Alan
    Shorten, Robert
    Heffernan, Daniel M.
    Naughton, David
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08): : 2169 - 2189
  • [7] SPECTRAL DECOMPOSITION AND FRACTAL EIGENVECTORS FOR A CLASS OF PIECEWISE-LINEAR MAPS
    TASAKI, S
    ANTONIOU, I
    SUCHANECKI, Z
    [J]. CHAOS SOLITONS & FRACTALS, 1994, 4 (02) : 227 - 254
  • [8] INTERPOLATION OF CONTINUOUS MAPS BY PIECEWISE-LINEAR MAPS
    BABENKO, VF
    [J]. MATHEMATICAL NOTES, 1978, 24 (1-2) : 526 - 532
  • [9] Simulation of Piecewise-Linear One-Dimensional Chaotic Maps by Verilog-A
    Valtierra Sanchez de la Vega, Jose Luis
    Tlelo-Cuautle, Esteban
    [J]. IETE TECHNICAL REVIEW, 2015, 32 (04) : 304 - 310
  • [10] Parametric evolution of unstable dimension variability in coupled piecewise-linear chaotic maps
    Pereira, R. F.
    Viana, R. L.
    Lopes, S. R.
    Verges, M. C.
    Pinto, S. E. de S.
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):