ERMAKOV SYSTEMS - A GROUP THEORETIC APPROACH

被引:19
|
作者
GOVINDER, KS
LEACH, PGL
机构
[1] Department of Mathematics and Applied Mathematics, University of Natal, Durban
关键词
D O I
10.1016/0375-9601(94)90700-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently Leach [Phys. Lett. A 158 (1991) 102] reported that Ermakov systems have the Lie algebra sl(2, R). Leach also reported the Lie algebra of the Ermakov-Lewis invariant to be sl(2, R). This is misleading and we complete his results. We also determine the general equation invariant under this new symmtery. Finally we find all (four) first integrals for Hamiltonian Ermakov systems.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 50 条
  • [1] GROUP THEORETIC APPROACH TO DISORDERED-SYSTEMS
    PRAHALAD, YS
    PHYSICS LETTERS A, 1987, 122 (6-7) : 335 - 337
  • [2] A group-theoretic approach to covering systems
    Jones, Lenny
    White, Daniel
    ALGEBRA & DISCRETE MATHEMATICS, 2015, 20 (02): : 250 - 262
  • [3] A new approach to Ermakov systems and applications in quantum physics
    Carinena, J. F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 160 (1): : 51 - 60
  • [4] A new approach to Ermakov systems and applications in quantum physics
    J. F. Cariñena
    The European Physical Journal Special Topics, 2008, 160 : 51 - 60
  • [5] Group theoretic approach to (4
    Usman, Muhammad
    Hussain, Akhtar
    Abd El-Rahman, Magda
    Herrera, Jorge
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 121 : 18 - 18
  • [6] GENERALIZED ERMAKOV SYSTEMS
    LEACH, PGL
    PHYSICS LETTERS A, 1991, 158 (3-4) : 102 - 106
  • [7] ON GENERALIZED ERMAKOV SYSTEMS
    ATHORNE, C
    PHYSICS LETTERS A, 1991, 159 (8-9) : 375 - 378
  • [8] POLYHEDRAL ERMAKOV SYSTEMS
    ATHORNE, C
    PHYSICS LETTERS A, 1990, 151 (08) : 407 - 411
  • [9] A group-theoretic approach of quasicrystals
    Cotfas, N
    FERROELECTRICS, 2001, 250 (1-4) : 317 - 320
  • [10] Feedback stabilization: a group theoretic approach
    Bokor, J.
    Szabo, Z.
    IFAC PAPERSONLINE, 2016, 49 (09): : 146 - 151