Canonical Correlation Analysis Based Sparse Representation Model for Robust Visual Tracking

被引:0
|
作者
Kang Bin [1 ,2 ]
Cao Wenwen [3 ]
Yan Jun [3 ]
Zhang Suofei [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Engn Res Ctr Commun & Network Technol, Nanjing 210003, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Commun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Sparse representation; Canonical correlation analysis;
D O I
10.11999/JEIT170939
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In traditional sparse representation based visual tracking, particle sampling is first achieved by particle filter method. Then the particle observations are represented by intensity feature. Finally, the visual tracking is achieved by the intensity feature based sparse representation model. Different from traditional sparse representation model, a canonical correlation analysis based sparse representation model is proposed in this paper. The proposed model first uses two kinds of features to represent the particle observations, then, the projections of particle observations are used to build the sparse representation model. The advantage of the proposed model lies in that it can give a proper multi-feature fusing through canonical correlation analysis, which explores the relation between two features in a latent common subspace.
引用
收藏
页码:1619 / 1626
页数:8
相关论文
共 24 条
  • [1] Adam A, 2006, IEEE C COMP VIS PATT, V2006, P798, DOI DOI 10.1109/CVPR.2006.256
  • [2] [Anonymous], [No title captured]
  • [3] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [4] Learning Local Appearances With Sparse Representation for Robust and Fast Visual Tracking
    Bai, Tianxiang
    Li, You-Fu
    Zhou, Xiaolong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (04) : 663 - 675
  • [5] Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881
  • [6] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577
  • [7] Robust Visual Tracking With Multitask Joint Dictionary Learning
    Fan, Heng
    Xiang, Jinhai
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 1018 - 1030
  • [8] Grabner H., 2006, BRIT MACH VIS C, V1, P6
  • [9] Struck: Structured Output Tracking with Kernels
    Hare, Sam
    Golodetz, Stuart
    Saffari, Amir
    Vineet, Vibhav
    Cheng, Ming-Ming
    Hicks, Stephen L.
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 2096 - 2109
  • [10] Exploiting the Circulant Structure of Tracking-by-Detection with Kernels
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 702 - 715