REWRITE RULE SYSTEMS FOR MODAL PROPOSITIONAL LOGIC

被引:6
|
作者
FORET, A [1 ]
机构
[1] INST RECH INFORMAT & SYST ALEATOIRES,IFSIC,F-35042 RENNES,FRANCE
来源
JOURNAL OF LOGIC PROGRAMMING | 1992年 / 12卷 / 03期
关键词
D O I
10.1016/0743-1066(92)90028-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper explains new results relating modal propositional logic and rewrite rule systems. More precisely, we give complete term rewriting systems for the modal propositional systems known as K, Q, T, and S5. These systems are presented as extensions of Hsiang's system for classical propositional calculus. We have checked local confluence with the rewrite rule system K.B. (cf. the Knuth-Bendix algorithm) developed by the Formel project at INRIA. We prove that these systems are noetherian, and then infer their confluence from Newman's lemma. Therefore each term rewriting system provides a new automated decision procedure and defines a canonical form for the corresponding logic. We also show how to characterize the canonical forms thus obtained.
引用
收藏
页码:281 / 298
页数:18
相关论文
共 50 条
  • [1] REWRITE RULE SYSTEMS FOR MODAL PROPOSITIONAL LOGIC
    FORET, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 343 : 147 - 156
  • [2] 4 SIMPLE SYSTEMS OF MODAL PROPOSITIONAL LOGIC
    MASSEY, GJ
    PHILOSOPHY OF SCIENCE, 1965, 32 (04) : 342 - 355
  • [3] ON MODAL LOGIC WITH PROPOSITIONAL QUANTIFIERS
    BULL, RA
    JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) : 257 - &
  • [4] NONCOMPACTNESS IN PROPOSITIONAL MODAL LOGIC
    THOMASON, SK
    JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (04) : 716 - 720
  • [5] NONCOMPACTNESS IN PROPOSITIONAL MODAL LOGIC
    THOMASON, SK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (04): : A535 - &
  • [6] Actuality in Propositional Modal Logic
    Hazen, Allen P.
    Rin, Benjamin G.
    Wehmeier, Kai F.
    STUDIA LOGICA, 2013, 101 (03) : 487 - 503
  • [7] Actuality in Propositional Modal Logic
    Allen P. Hazen
    Benjamin G. Rin
    Kai F. Wehmeier
    Studia Logica, 2013, 101 : 487 - 503
  • [8] PROPOSITIONAL QUANTIFIERS IN MODAL LOGIC
    FINE, K
    THEORIA, 1970, 36 : 336 - 346
  • [9] Destructive Extension Rule in Propositional Modal Logic S5 System
    Ma, Li Zheng
    Tan, Xi
    Huang, Pei
    Bai, Li
    Wu, Zi Yan
    MANUFACTURING, DESIGN SCIENCE AND INFORMATION ENGINEERING, VOLS I AND II, 2015, : 1249 - 1255
  • [10] The symmetry rule in propositional logic
    Urquhart, A
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 177 - 193