AUTOMORPHISMS OF THE Q-OSCILLATOR ALGEBRA AND BASIC ORTHOGONAL POLYNOMIALS

被引:29
|
作者
FLOREANINI, R
VINET, L
机构
[1] UNIV TRIESTE,DIPARTIMENTO FIS TEOR,I-34014 TRIESTE,ITALY
[2] UNIV MONTREAL,PHYS NUCL LAB,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1016/0375-9601(93)90289-C
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain automorphisms of the quantum oscillator algebra are shown to provide an algebraic interpretation for q-generalizations of the Charlier polynomials.
引用
收藏
页码:393 / 401
页数:9
相关论文
共 50 条
  • [1] q-Oscillator Algebra And d-Orthogonal Polynomials
    Fethi Bouzeffour
    Ali Zagouhani
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 480 - 494
  • [2] q-Oscillator Algebra And d-Orthogonal Polynomials
    Bouzeffour, Fethi
    Zagouhani, Ali
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (04) : 480 - 494
  • [3] MORE ON THE Q-OSCILLATOR ALGEBRA AND Q-ORTHOGONAL POLYNOMIALS
    FLOREANINI, R
    LETOURNEUX, J
    VINET, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10): : L287 - L293
  • [4] A General q-Oscillator Algebra
    L.C. Kwek
    C.H. Oh
    Letters in Mathematical Physics, 1998, 44 : 273 - 281
  • [5] On the representations of a Q-oscillator algebra
    Guichardet, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 4965 - 4969
  • [6] A general q-oscillator algebra
    Kwek, LC
    Oh, CH
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (04) : 273 - 281
  • [7] Tridiagonal representations of the q-oscillator algebra and Askey-Wilson polynomials
    Tsujimoto, Satoshi
    Vinet, Luc
    Zhedanov, Alexei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (23)
  • [8] UNITARY REPRESENTATIONS OF THE Q-OSCILLATOR ALGEBRA
    CHAICHIAN, M
    GROSSE, H
    PRESNAJDER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06): : 2045 - 2051
  • [9] WEYL SHIFT OF Q-OSCILLATOR AND Q-POLYNOMIALS
    ZHEDANOV, AS
    THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 94 (02) : 219 - 224
  • [10] Representations of q-oscillator algebra at a root of 1
    侯伯宇
    侯伯元
    许连超
    周善有
    Science China Mathematics, 1995, (07) : 799 - 804