3-DIMENSIONAL RELATIVISTIC-COVARIANT POISSON BRACKETS

被引:0
|
作者
TIKOCHINSKY, Y
机构
[1] Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem
关键词
D O I
10.1007/BF00672685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the algebraic properties of Poisson brackets, we extend the three-dimensional brackets (for a single free particle) to conform to the demands of special relativity. This yields, in an essentially unique way, the manifestly covariant extension [x(mu), p(nu)] = delta(munu) + P(mu)P(nu)/m2c2. Position and time then become fully dynamical variables expressible in terms of the canonical conjugate q(i) and p(i) and the time parameter theta as x(i) = q(i) + p(i)(q . p)/m2c2 and t = theta + E(q . p)/m2c4. In the quantized version, the length associated with a particle of mass m is shown to be an integral multiple of the Compton wavelength lambda(c) = HBAR/mc.
引用
收藏
页码:1599 / 1609
页数:11
相关论文
共 50 条
  • [1] ON THE RELATIVISTIC-COVARIANT CHRONOLOGICAL ORDERING OF INTERACTION LAGRANGIANS
    ZORIN, AV
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1990, 33 (05): : 70 - 73
  • [2] Covariant Poisson brackets of classical fields
    Mashkour, MA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (11) : 2011 - 2016
  • [3] COVARIANT POISSON BRACKETS FOR CLASSICAL FIELDS
    MARSDEN, JE
    MONTGOMERY, R
    MORRISON, PJ
    THOMPSON, WB
    [J]. ANNALS OF PHYSICS, 1986, 169 (01) : 29 - 47
  • [4] Covariant Poisson Brackets of Classical Fields
    M. A. Mashkour
    [J]. International Journal of Theoretical Physics, 2001, 40 : 2011 - 2016
  • [5] Symmetries and Covariant Poisson Brackets on Presymplectic Manifolds
    Ciaglia, Florio M.
    Di Cosmo, Fabio
    Ibort, Alberto
    Marmo, Giuseppe
    Schiavone, Luca
    Zampini, Alessandro
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [6] On covariant Poisson brackets in classical field theory
    Forger, Michael
    Salles, Mario O.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [7] Covariant Poisson Brackets in Geometric Field Theory
    Michael Forger
    Sandro Vieira Romero
    [J]. Communications in Mathematical Physics, 2005, 256 : 375 - 410
  • [8] Covariant Poisson brackets in geometric field theory
    Forger, M
    Romero, SV
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (02) : 375 - 410
  • [9] On some relativistic-covariant stochastic processes in Lorentzian space-times
    Emery, Michel
    [J]. COMPTES RENDUS MATHEMATIQUE, 2009, 347 (13-14) : 817 - 820
  • [10] Relativistic Equations of Motion from Poisson Brackets
    Paul Bracken
    [J]. International Journal of Theoretical Physics, 1998, 37 : 1625 - 1640