DESIGN OF P AND PI STABILIZING CONTROLLERS FOR QUASI-LINEAR SYSTEMS

被引:9
|
作者
CALVET, JP [1 ]
ARKUN, Y [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH CHEM ENGN,ATLANTA,GA 30332
关键词
D O I
10.1016/0098-1354(90)87017-J
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The systems studied in this paper are nonlinear systems perturbed by disturbances which are feedback transformable to quasi-linear systems [i.e. z̊ = Az + Bv + ζ(z)d with (A, B) controllable]. We consider the problem of designing stabilizing controllers for perturbed nonlinear systems through their equivalent quasi-linear systems. With the addition of integral action, we can guarantee not only ultimate δ-stabilization but also zero steady state offset for both the output of the quasi-linear system (y = Cz) and for the equivalent output [y = h(x)] of the nonlinear system. Moreover, when the so-called disturbance matching condition is satisfied, it is shown that all the states of the quasi-linear system (and the nonlinear system) will exhibit zero steady state offset. All the results presented here are for single control input systems. © 1990.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [1] Design of stabilizing PI and PID controllers
    Tan, Nusret
    Atherton, Derek P.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2006, 37 (08) : 543 - 554
  • [2] Computation of stabilizing sets of p and pi controllers for linear processes with time delay
    Ou, Lin-Lin
    Gu, Dan-Ying
    Zhang, Wei-Dong
    [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2006, 40 (07): : 1112 - 1116
  • [3] QUASI-LINEAR MONOTONE SYSTEMS
    LIBKIN, LO
    MUCHNIK, IB
    SHVARTSER, LV
    [J]. AUTOMATION AND REMOTE CONTROL, 1989, 50 (09) : 1249 - 1259
  • [4] OBSERVERS FOR THE QUASI-LINEAR SYSTEMS
    Shakhov, Y. A.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2010, (05): : 258 - 262
  • [5] ON CONTROLLABILITY OF QUASI-LINEAR SYSTEMS
    TKHANBAN.N
    [J]. JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1967, 31 (01): : 160 - &
  • [6] Quasi-Linear Control Approach to Designing Step Tracking Controllers for Systems With Saturating Actuators
    Kabamba, Pierre T.
    Meerkov, Semyon M.
    Ossareh, Hamid R.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (05):
  • [7] Linear attraction in quasi-linear difference systems
    Pinto, Manuel
    Robledo, Gonzalo
    Torres, Victor
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (05) : 765 - 778
  • [8] Design of Stabilizing Controllers for Nonlinear Systems
    Cai Guang-Bin
    Hu Chang-Hua
    Duan Guang-Ren
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 589 - 594
  • [9] GEOMETRIC BLOWUP FOR QUASI-LINEAR SYSTEMS
    ALINHAC, S
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) : 987 - 1017
  • [10] SOLVABILITY OF QUASI-LINEAR PARABOLIC SYSTEMS
    POKHOZHAEV, SI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1970, 192 (06): : 1217 - +