NATURAL FRENET EQUATIONS OF NULL CURVES

被引:0
|
作者
Jin, Dae Ho [1 ]
机构
[1] Dongguk Univ, Dept Math, 707 Seokjang Dong, Gyeongju 780714, Gyeongbuk, South Korea
关键词
null curve; Frenet frames;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the geometry of null curves in a Lorentzian manifold (M, g). We show that it is possible to construct new type of Frenet equations of null curves in M, supported by two examples.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 50 条
  • [1] A natural Frenet frame for null curves on the lightlike cone in Minkowski space R24
    Abazari, Nemat
    Bohner, Martin
    Sager, Ilgin
    Sedaghatdoost, Alireza
    Yayli, Yusuf
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [2] Natural mates of Frenet curves in Euclidean 3-space
    Deshmukh, Sharief
    Chen, Bang-Yen
    Alghanemi, Azeb
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2826 - 2840
  • [3] Similar Frenet Curves
    Radostina P. Encheva
    Georgi H. Georgiev
    Results in Mathematics, 2009, 55
  • [4] Differential Equations of Null Quaternionic Curves
    Kahraman T.
    International Journal of Applied and Computational Mathematics, 2020, 6 (3)
  • [5] Similar Frenet Curves
    Encheva, Radostina P.
    Georgiev, Georgi H.
    RESULTS IN MATHEMATICS, 2009, 55 (3-4) : 359 - 372
  • [6] ON FRENET EQUATIONS
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) : 349 - 356
  • [7] Sequential natural mates of Frenet curves in Euclidean 3-space
    Çetin Camci
    Bang-Yen Chen
    Kazım İlarslan
    Ali Uçum
    Journal of Geometry, 2021, 112
  • [8] Sequential natural mates of Frenet curves in Euclidean 3-space
    Camci, Cetin
    Chen, Bang-Yen
    Ilarslan, Kazim
    Ucum, Ali
    JOURNAL OF GEOMETRY, 2021, 112 (03)
  • [9] Null Frenet-Serret dynamics
    Capovilla, R.
    Guven, J.
    Rojas, E.
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (04) : 689 - 698
  • [10] Null Frenet-Serret dynamics
    R. Capovilla
    J. Guven
    E. Rojas
    General Relativity and Gravitation, 2006, 38 : 689 - 698