ON THE NUMBER OF POINTS ON A COMPLETE INTERSECTION OVER A FINITE-FIELD

被引:36
|
作者
HOOLEY, C [1 ]
机构
[1] UNIV WALES COLL CARDIFF,SCH MATH,CARDIFF CF1 1XL,S GLAM,WALES
关键词
D O I
10.1016/0022-314X(91)90023-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a projective complete intersection defined over the finite field Fq of q=pα elements and suppose it has dimension n and a singular locus of dimension d. We prove that the number of points of V with components in Fq is equal to qn+1-1 q-1+O(q (n+d+1) 2) thus generalizing the well-known estimate of Deligne for the number of points on a non-singular complete intersection. © 1991.
引用
收藏
页码:338 / 358
页数:21
相关论文
共 50 条