Radiation emitted from the shock layer generated around a hypersonic flight model is experimentally investigated by using a ballistic range (two-stage light-gas gun). A polyethylene projectile of 1.2 cm in diameter is launched in this facility at the velocity of 5 km/sec (M = 15), and the emission from the induced shock layer around the projectile is observed with a spectroscope. As a result, molecular band-spectra from NO and N-2 are detected along with those from carboncontaining molecules. Total emission power is measured with a diode-type powermeter. In addition, dimension effect of the flight model is theoretically and numerically examined, and a scaling law on thermochemical structure of the shock layer is developed. It shows that the thickness of thermal boundary-layer formed on the model surface does not follow the conventional scaling law based on the reaction distance and on the energy relaxation distance. Finally, the radiative field around the projectile is numerically computed, and the total power emitted from the shock layer is estimated. From the comparison between computed and measured results, the validity of the calculation model is discussed.