JACOBI FIELDS ON THE MANIFOLD OF FREUND

被引:0
|
作者
Arif, Muhammad Shoaib [1 ]
Zhang Er-chuan [1 ]
Sun Hua-fei [1 ]
机构
[1] Beijing Inst Technol, Sch Math, Beijing 100081, Peoples R China
关键词
Freund manifold; Riemannian metric; alpha-connection; alpha-curvature tensor; Jacobi field;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the geometric structures of Freund manifold are considered By defining a Riemannian metric, the curvature tensor and the scalar curvature are given. Then, the Jacobi fields on the Freund manifold have been considered to investigate the instability of the geodesics in view of differential geometry. Moreover, we take submanifold of Freund manifold as an example to illustrate our results.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 50 条
  • [1] Jacobi fields on a Riemann manifold
    Bondarenko V.G.
    [J]. Ukrainian Mathematical Journal, 2006, 58 (12) : 1818 - 1833
  • [2] Jacobi fields on the manifold of Gamma exponential
    Arif, Muhammad Shoaib
    Zhang, Er-Chuan
    Sun, Hua-Fei
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (05) : 609 - 619
  • [3] Jacobi fields on the manifold of power spectral
    Syed, Feroz-Shah
    Duan, Xiao-Min
    Sun, Hua-Fei
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2013, 33 (08): : 862 - 865
  • [4] The Hermitian connection and the Jacobi fields of a complex Finsler manifold
    Spiro, A
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2002, 16 (01) : 49 - 63
  • [5] Covariant derivatives of Jacobi fields on a manifold of nonpositive curvature
    Bondarenko V.G.
    [J]. Ukrainian Mathematical Journal, 1998, 50 (6) : 857 - 869
  • [6] JACOBI FIELDS ALONG GEODESICS IN TANGENT BUNDLE OF A PSEUDO-RIEMANNIAN MANIFOLD
    VANCALCK, G
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (14): : 565 - 567
  • [7] JACOBI FIELDS
    NOVELLO, M
    SOARES, ID
    SALIM, JM
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1977, 8 (02) : 95 - 102
  • [8] VOLUME OF JACOBI VARIETY OF A RIEMANNIAN MANIFOLD
    LAFONTAINE, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (23): : 1519 - 1522
  • [9] A geometric Hamilton-Jacobi theory on a Nambu-Jacobi manifold
    de Leon, M.
    Sardon, C.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
  • [10] STOCHASTIC JACOBI FIELDS
    MALLIAVIN, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (12): : 789 - 792