THE DOUBLE PRIOR SELECTION FOR THE PARAMETER OF INVERTED EXPONENTIAL DISTRIBUTION UNDER TYPE-II CENSORING

被引:0
|
作者
Patel, Ronak M. [1 ]
Patel, Achyut C. [2 ]
机构
[1] Som Lalait Inst Commerce, Dept Stat, Ahmadabad 380009, Gujarat, India
[2] Smt MT Dhamsania Comm Coll, Dept Stat, Kalawad Rd, Rajkot 360001, Gujarat, India
关键词
Bayes estimation; Credible interval; Reliability; Jeffrey's prior; Inverted gamma prior; Gumble Type-II prior;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This paper is concerned with the comparison of double priors assumed for the parameter of inverted exponential distribution for quadratic loss function under Type-II censoring. The three different double priors viz. (i) inverted gamma and Gumble Type-II prior (ii) inverted gamma and Jeffrey's prior (iii) Gumble Type-II and Jeffrey's prior. The results obtained under the above double priors are also compared with that of based on only inverted gamma prior. Under Type-II censoring, Bayes estimation of the parameter and reliability at time t are obtained along with their equal tail credible intervals. The Bayes predictive estimator for the future observation and for the remaining order statistics after the censoring period are also derived along with their equal tail credible intervals. A simulation study is carried out to compare the performance of the Bayes estimators under the double prior distributions.
引用
收藏
页码:561 / 568
页数:8
相关论文
共 50 条
  • [1] Estimating the parameter of Exponential distribution under Type-II censoring from fuzzy data
    Nayereh Bagheri Khoolenjani
    Fateme Shahsanaie
    [J]. Journal of Statistical Theory and Applications, 2016, 15 (2): : 181 - 195
  • [2] Estimating the parameter of Exponential distribution under Type-II censoring from fuzzy data
    Khoolenjani, Nayereh Bagheri
    Shahsanaie, Fateme
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2016, 15 (02): : 181 - 195
  • [3] Statistical Inference of the Generalized Inverted Exponential Distribution under Joint Progressively Type-II Censoring
    Chen, Qiyue
    Gui, Wenhao
    [J]. ENTROPY, 2022, 24 (05)
  • [4] Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring
    Ganguly, A.
    Mitra, S.
    Samanta, D.
    Kundu, D.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (03) : 613 - 625
  • [5] Interval estimation for the Gini index of shifted exponential distribution under Type-II double censoring
    Wang D.
    Cai X.
    Tian L.
    [J]. Health Services and Outcomes Research Methodology, 2015, 15 (2) : 69 - 81
  • [6] Bayesian Estimation of the Exponential Parameter under a Multiply Type-II Censoring Scheme
    Singh, Umesh
    Kumar, Anil
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2007, 36 (03) : 227 - 238
  • [7] Confidence Intervals for Quantiles of a Two-parameter Exponential Distribution under Progressive Type-II Censoring
    Balakrishnan, N.
    Hayter, A. J.
    Liu, W.
    Kiatsupaibul, S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (14) : 3001 - 3010
  • [8] Confidence bands for exponential distribution functions under progressive type-II censoring
    Bedbur, Stefan
    Mies, Fabian
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (01) : 60 - 80
  • [9] Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring
    Ping Shing Chan
    Hon Keung Tony Ng
    Feng Su
    [J]. Metrika, 2015, 78 : 747 - 770
  • [10] Estimating the scale parameter of an exponential distribution under progressive type II censoring
    Tripathi, Yogesh Mani
    Petropoulos, Constantinos
    Mahto, Amulya Kumar
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (19) : 6777 - 6791