SEQUENCE OF GREATEST INTEGERS OF AN ARITHMETIC PROGRESSION

被引:0
|
作者
ROSENBLATT, J
机构
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1978年 / 17卷 / APR期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [1] DIVISORS OF INTEGERS IN ARITHMETIC-PROGRESSION
    VARBANEC, PD
    ZARZYCKI, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (02): : 129 - 134
  • [2] ARITHMETIC PROGRESSION OF INTEGERS PRIME TO N
    JUST, E
    SCHAUMBE.N
    MOORE, DM
    WELLS, C
    UPATISRI.V
    CHUCK, A
    GOLDSTEI.P
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 907 - &
  • [3] N CONSECUTIVE INTEGERS IN AN ARITHMETIC PROGRESSION
    EVANS, R
    ACTA SCIENTIARUM MATHEMATICARUM, 1972, 33 (3-4): : 295 - 296
  • [4] Sums of squares of integers in arithmetic progression
    Apostol, Tom
    Mnatsakanian, Mamikon
    MATHEMATICAL GAZETTE, 2011, 95 (533): : 186 - 196
  • [5] DIVISORS OF THE GAUSSIAN INTEGERS IN AN ARITHMETIC-PROGRESSION
    VARBANEC, PD
    ZARZYCKI, P
    JOURNAL OF NUMBER THEORY, 1989, 33 (02) : 152 - 169
  • [6] Integers without divisors from a fixed arithmetic progression
    Banks, William D.
    Friedlander, John B.
    Luca, Florian
    FORUM MATHEMATICUM, 2008, 20 (06) : 1005 - 1037
  • [7] ON SETS OF INTEGERS CONTAINING NO 4 ELEMENTS IN ARITHMETIC PROGRESSION
    SZEMEREDI, E
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1969, 20 (1-2): : 89 - +
  • [8] The greatest prime divisor of a product of terms in an arithmetic progression
    Laishram, Shanta
    Shorey, T. N.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (03): : 425 - 436
  • [9] SUM OF RECIPROCALS OF A SET OF INTEGERS WITH NO ARITHMETIC PROGRESSION OF KAPPA TERMS
    GERVER, JL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 62 (02) : 211 - 214
  • [10] The Number of Subsets of Integers with No k-Term Arithmetic Progression
    Balogh, Jozsef
    Liu, Hong
    Sharifzadeh, Maryam
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6168 - 6186