TOWARDS A DIVIDE-AND-CONQUER ALGORITHM FOR THE REAL NONSYMMETRIC EIGENVALUE PROBLEM

被引:1
|
作者
ADAMS, L [1 ]
ARBENZ, P [1 ]
机构
[1] SWISS FED INST TECHNOL,INST WISSENSCHAFTL RECHNEN,ZENTRUM,CH-8092 ZURICH,SWITZERLAND
关键词
TRIDIAGONAL MATRIX; HEISSENBERG MATRIX; MODIFIED EIGENVALUE PROBLEM; DIVIDE AND CONQUER ALGORITHM;
D O I
10.1137/S089547989122017X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Theory is developed that could be used towards developing a divide and conquer algorithm for the nonsymmetric eigenvalue problem. The shortcomings of this theory and its application to the Hessenberg and nonsymmetric tridiagonal problems are discussed. The conclusion is made that the method may not be as promising as the divide and conquer methods for symmetric problems.
引用
收藏
页码:1333 / 1353
页数:21
相关论文
共 50 条
  • [1] A CASE AGAINST A DIVIDE-AND-CONQUER APPROACH TO THE NONSYMMETRIC EIGENVALUE PROBLEM
    JESSUP, ER
    [J]. APPLIED NUMERICAL MATHEMATICS, 1993, 12 (05) : 403 - 420
  • [2] DIVIDE-AND-CONQUER ALGORITHMS FOR THE BANDSYMMETRIC EIGENVALUE PROBLEM
    ARBENZ, P
    [J]. PARALLEL COMPUTING, 1992, 18 (10) : 1105 - 1128
  • [3] A divide-and-conquer method for the tridiagonal generalized eigenvalue problem
    Elsner, L
    Fasse, A
    Langmann, E
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) : 141 - 148
  • [4] A NOTE ON DIVIDE-AND-CONQUER ALGORITHMS FOR THE SYMMETRICAL TRIDIAGONAL EIGENVALUE PROBLEM
    ARBENZ, P
    GATES, K
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T529 - T531
  • [5] AN ACCELERATED DIVIDE-AND-CONQUER ALGORITHM FOR THE BIDIAGONAL SVD PROBLEM
    Li, Shengguo
    Gu, Ming
    Cheng, Lizhi
    Chi, Xuebin
    Sun, Meng
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (03) : 1038 - 1057
  • [6] A distributed divide-and-conquer approach to the parallel tridiagonal symmetric eigenvalue problem
    Pavani, R
    DeRos, U
    [J]. HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1995, 919 : 717 - 722
  • [7] A PRACTICAL DIVIDE-AND-CONQUER ALGORITHM FOR THE RECTANGLE INTERSECTION PROBLEM
    GUTING, RH
    SCHILLING, W
    [J]. INFORMATION SCIENCES, 1987, 42 (02) : 95 - 112
  • [8] New fast divide-and-conquer algorithms for the symmetric tridiagonal eigenvalue problem
    Li, Shengguo
    Liao, Xiangke
    Liu, Jie
    Jiang, Hao
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (04) : 656 - 673
  • [9] A new divide and conquer algorithm for real symmetric band generalized eigenvalue problem
    Wei, LF
    Li, XM
    [J]. FIFTH INTERNATIONAL CONFERENCE ON ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2002, : 105 - 108
  • [10] A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems
    Liao, Xia
    Li, Shengguo
    Lu, Yutong
    Roman, Jose E.
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (02) : 367 - 378