Environment perception simulation for radar stimulation in automated driving function testing

被引:0
|
作者
Maier, F. M. [1 ]
Makkapati, V. P. [1 ]
Horn, M. [1 ]
机构
[1] Graz Univ Technol, Inst Automat & Control, Inffeldgasse 21b-I, A-8010 Graz, Austria
来源
ELEKTROTECHNIK UND INFORMATIONSTECHNIK | 2018年 / 135卷 / 4-5期
基金
欧盟地平线“2020”;
关键词
RCS; testing; automotive radar; automated driving functions; environment perception simulation for radar; Phong;
D O I
10.1007/s00502-018-0624-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automated driving is seen as one of the key technologies that shape our future mobility. Testing these automated driving functions (ADF) in virtual environments has the potential to speed up their development and homologation. As the automated driving functions rely on sensors to perceive the environment, a key requirement for virtual testing is the ability to simulate the environment perception of the involved sensors. In this paper we present a concept for environment perception simulation of radar sensors (EPSR)-namely radar signature and stimulation input generation (RASIG)-to be employed in the context of vehicle-in-the-loop (ViL) tests in conjunction with over-the-air (OTA) stimulation hardware. The requirements on environment perception simulation of radar sensors for integration into such a test set-up and its real-time capability along with some validation results are discussed.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 50 条
  • [1] Environment perception simulation for radar stimulation in automated driving function testing (vol 135, pg 309, 2018)
    Maier, F. Michael
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2018, 135 (06): : 435 - 435
  • [2] Environment perception simulation for radar stimulation in automated driving function testing; [Simulation der Umgebungswahrnehmung von Radar-Sensoren für deren Stimulation in Tests von automatisierten Fahrfunktionen]
    Maier F.M.
    Makkapati V.P.
    Horn M.
    e & i Elektrotechnik und Informationstechnik, 2018, 135 (4-5) : 309 - 315
  • [3] A Review of Testing Object-Based Environment Perception for Safe Automated Driving
    Hoss, Michael
    Scholtes, Maike
    Eckstein, Lutz
    AUTOMOTIVE INNOVATION, 2022, 5 (03) : 223 - 250
  • [4] A Review of Testing Object-Based Environment Perception for Safe Automated Driving
    Michael Hoss
    Maike Scholtes
    Lutz Eckstein
    Automotive Innovation, 2022, 5 : 223 - 250
  • [5] Calibration and Assessment of Urban Microscopic Traffic Simulation as an Environment for Testing of Automated Driving
    Langer, Marcel
    Harth, Michael
    Preitschaft, Lena
    Kates, Ronald
    Bogenberger, Klaus
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3210 - 3216
  • [6] Enhancing CARLA traffic simulation with pedestrian animation for testing perception functions in automated driving
    de Oliveira, Lucas Fonseca Alexandre
    Bernhard, Johannes
    Schories, Lars
    Meywerk, Martin
    Sax, Eric
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3859 - 3864
  • [7] Assessing the Safety of Environment Perception in Automated Driving Vehicles
    Berk, Mario
    Schubert, Olaf
    Kroll, Hans-Martin
    Buschardt, Boris
    Straub, Daniel
    SAE INTERNATIONAL JOURNAL OF TRANSPORTATION SAFETY, 2020, 8 (01) : 49 - 74
  • [8] Perception Sensor Model Fidelity Evaluation for Automated Driving System Scenario-Based Simulation Testing
    Zhu, Bing
    Fan, Tianxin
    Zhao, Wenbo
    Li, Changrong
    Zhang, Peixing
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2025,
  • [9] Evaluation Methodology for Physical Radar Perception Sensor Models Based on On-Road Measurements for the Testing and Validation of Automated Driving
    Magosi, Zoltan Ferenc
    Wellershaus, Christoph
    Tihanyi, Viktor Roland
    Luley, Patrick
    Eichberger, Arno
    ENERGIES, 2022, 15 (07)
  • [10] MiRE, A Mixed Reality Environment for Testing of Automated Driving Functions
    Drechsler, Maikol Funk
    Peintner, Jakob
    Reway, Fabio
    Seifert, Georg
    Riener, Andreas
    Huber, Werner
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (04) : 3443 - 3456