Spatio-temporal principal component analysis

被引:0
|
作者
Krzysko, Miroslaw [1 ]
Nijkamp, Peter [2 ,3 ]
Ratajczak, Waldemar [4 ]
Wolynski, Waldemar [5 ]
Wenerska, Beata [1 ]
机构
[1] Calis Univ Kalisz, Fac Social Sci, Kalisz, Poland
[2] Open Univ, Fac Management, Heerlen, Netherlands
[3] Alexandru Ioan Cuza Univ, Ctr European Studies, Iasi, Romania
[4] Adam Mickiewicz Univ, Fac Socioecon Geog & Spatial Management, Poznan, Poland
[5] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
关键词
Spatio-temporal data; multivariate analysis; spatio-temporal principal components; Moran's I index; functional data; spatial weights;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Principal component analysis (PCA) is a well-established research approach extensively utilised in the quantitative social sciences. The primary objective of the present study is to devise and evaluate a novel methodology that effectively addresses the mathematical and statistical treatment of spatio-temporal dependencies among multivariate datasets within PCA. This approach builds upon recent advancements in multifunctional PCA. The study aims to optimise the product of the variance of functional principal components and the Moran's I index, thereby enhancing the analytical framework. Both simulation studies and a real example show that positive spatio-temporal principal components should be constructed using a distance-based spatial weight matrix, and negative ones using a border-lengthbased spatial weight matrix.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Spatio-temporal principal component analysis
    Krzysko, Miroslaw
    Nijkamp, Peter
    Ratajczak, Waldemar
    Wolynski, Waldemar
    Wenerska, Beata
    [J]. SPATIAL ECONOMIC ANALYSIS, 2024, 19 (01) : 8 - 29
  • [2] A novel Spatio-temporal principal component analysis based on Geary's contiguity ratio
    Krzys, Miroslaw
    Nijkamp, Peter
    Ratajczak, Waldemar
    Wolynski, Waldemar
    Wojtyla, Andrzej
    Wenerska, Beata
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2023, 103
  • [3] An Application of Principal Component Analysis on Multivariate Time-stationary Spatio-temporal Data
    Stahlschmidt, Stephan
    Haerdle, Wolfgang K.
    Thome, Helmut
    [J]. SPATIAL ECONOMIC ANALYSIS, 2015, 10 (02) : 160 - 180
  • [4] SPATIO-TEMPORAL ANALYSIS OF SAMPLING PROCESS IN PLANKTOLOGY, ITS INFLUENCE ON INTERPRETATION OF DATA BY PRINCIPAL COMPONENT ANALYSIS
    IBANEZ, F
    [J]. ANNALES DE L INSTITUT OCEANOGRAPHIQUE, 1973, 49 (02): : 83 - 111
  • [5] Spatio-temporal Coupled Bayesian Robust Principal Component Analysis for Road Traffic Event Detection
    Yang, Shiming
    Kalpakis, Konstantinos
    Biem, Alain
    [J]. 2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 392 - 398
  • [6] DYNAMICS AND SPATIO-TEMPORAL VARIABILITY OF ENVIRONMENTAL FACTORS IN EASTERN AUSTRALIA USING FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
    Szabo, Judit K.
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2010, 18 (04) : 763 - 785
  • [7] Principal component analysis applied to a time series of MODIS images: the spatio-temporal variability of the Pantanal wetland, Brazil
    Ribeiro de Almeida, Teodoro Isnard
    Penatti, Natasha Costa
    Ferreira, Laerte Guimaraes
    Arantes, Arielle Elias
    do Amaral, Cibele Hummel
    [J]. WETLANDS ECOLOGY AND MANAGEMENT, 2015, 23 (04) : 737 - 748
  • [8] Spatio-temporal analysis of the Brantas river water quality status by using principal component weighted index (PCWI)
    Lusiana, Evellin Dewi
    Mahmudi, Mohammad
    Musa, Muhammad
    Primadhita, Maria Alfonsa Okta
    Putra, Syahrijal
    Silalahi, Jumpa Priodi
    Sunadji
    Buwono, Nanik Retno
    [J]. ECOLOGICAL QUESTIONS, 2023, 34 (03)
  • [9] Spatio-temporal variation of WQI, scaling and corrosion indices, and principal component analysis in rural areas of Marand, Iran
    Sheikhi, Samira
    Shahbazi, Hossein
    Mosaferi, Mohammad
    Firuzi, Parisa
    Aslani, Hassan
    [J]. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2020, 11
  • [10] Principal component analysis applied to a time series of MODIS images: the spatio-temporal variability of the Pantanal wetland, Brazil
    Teodoro Isnard Ribeiro de Almeida
    Natasha Costa Penatti
    Laerte Guimarães Ferreira
    Arielle Elias Arantes
    Cibele Hummel do Amaral
    [J]. Wetlands Ecology and Management, 2015, 23 : 737 - 748