EQUATION X2P+Y2P=Z2P

被引:0
|
作者
TERJANIAN, G
机构
来源
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A | 1977年 / 285卷 / 16期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:973 / 975
页数:3
相关论文
共 50 条
  • [1] 关于不定方程x2p+y2p=z2p
    张勤颖
    苑金臣
    仇光印
    山东大学
    沈阳化工学院学报, 1997, (04) : 73 - 78
  • [2] THE EQUATION X2P + Y2P + Z2P = W2P
    POWELL, BJ
    FOSTER, LL
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (06): : 445 - 445
  • [3] ON THE EQUATION Y(2)=(X+P)(X(2)+P(2))
    STROEKER, RJ
    TOP, J
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (03) : 1135 - 1161
  • [4] On the Diophantine equation (p + 2)x ? p y = z 2 , where p is prime and p ? 5 (mod 24)
    Tadee, Suton
    Laomalaw, Napalai
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (02): : 149 - 152
  • [5] Z2P: Instant Visualization of Point Clouds
    Metzer, G.
    Hanocka, R.
    Giryes, R.
    Mitra, N. J.
    Cohen-Or, D.
    COMPUTER GRAPHICS FORUM, 2022, 41 (02) : 461 - 471
  • [6] A Classical Group of Neutrosophic Triplet Groups Using {Z2p, x}
    Kandasamy, Vasantha W. B.
    Kandasamy, Ilanthenral
    Smarandache, Florentin
    SYMMETRY-BASEL, 2018, 10 (06):
  • [7] DIOPHANTINE EQUATION P2X4+3PX2Y2+Y4=Z2, P AN ODD PRIME
    SINHA, TN
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1975, 79 (1-2): : 41 - 44
  • [8] On covering radius of codes over Z2p
    Annamalai, N.
    Durairajan, C.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (02)
  • [9] On the Diophantine Equation 4(x) - p(y) = 3z(2) where p is a Prime
    Tiongson Rabago, Julius Fergy
    THAI JOURNAL OF MATHEMATICS, 2018, 16 (03): : 643 - 650
  • [10] ON THE EQUATION Y2=X(X2+P)
    BREMNER, A
    CASSELS, JWS
    MATHEMATICS OF COMPUTATION, 1984, 42 (165) : 257 - 264