BLOCH VARIETIES OF HIGHER-DIMENSIONAL, PERIODIC SCHRODINGER OPERATORS

被引:2
|
作者
Klauer, A. [1 ]
Schmidt, M. U. [1 ]
机构
[1] Univ Mannheim, Lehrstuhl Math 3, D-68131 Mannheim, Germany
关键词
Bloch variety; periodic Schrodinger operator; Fermi curve;
D O I
10.1515/JAA.2009.33
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We relax the regularity conditions on potentials of higher-dimensional periodic Schrodinger operators while their resolvents may still be defined as compact operators on L-2. This enables us to define the Bloch varieties locally as the zero locus of a holomorphic map in a more general setting. We also give an asymptotic description of the Fermi curve.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [1] Bloch varieties of higher-dimensional, periodic Schrodinger operators (vol 15, pg 33, 2009)
    Klauer, Alexander
    Schmidt, Martin U.
    JOURNAL OF APPLIED ANALYSIS, 2013, 19 (02) : 305 - 306
  • [2] Commuting differential operators and higher-dimensional algebraic varieties
    Herbert Kurke
    Denis Osipov
    Alexander Zheglov
    Selecta Mathematica, 2014, 20 : 1159 - 1195
  • [3] Commuting differential operators and higher-dimensional algebraic varieties
    Kurke, Herbert
    Osipov, Denis
    Zheglov, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (04): : 1159 - 1195
  • [4] On the spectral gap of higher-dimensional Schrodinger operators on large domains
    Kerner, Joachim
    Taeufer, Matthias
    ASYMPTOTIC ANALYSIS, 2023, 133 (1-2) : 77 - 89
  • [5] CLASSIFICATION OF HIGHER-DIMENSIONAL VARIETIES
    MORI, S
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 269 - 331
  • [6] HIGHER-DIMENSIONAL PERIODIC SYSTEMS
    CHAMBERS, CM
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (11) : 1664 - &
  • [7] ON THE HITCHIN MORPHISM FOR HIGHER-DIMENSIONAL VARIETIES
    Chen, T. H.
    Ngo, B. C.
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (10) : 1971 - 2004
  • [8] On higher-dimensional del Pezzo varieties
    Kuznetsov, A. G.
    Prokhorov, Yu. G.
    IZVESTIYA MATHEMATICS, 2023, 87 (03) : 488 - 561
  • [9] Uniformisation of higher-dimensional minimal varieties
    Greb, Daniel
    Kebekus, Stefan
    Taji, Behrouz
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 277 - 308
  • [10] Castelnuovo bounds for higher-dimensional varieties
    Zak, F. L.
    COMPOSITIO MATHEMATICA, 2012, 148 (04) : 1085 - 1132