Digraphs with isomorphic underlying and domination graphs: 4-cycles and pairs of paths

被引:0
|
作者
Factor, Kim A. S. [1 ]
Langley, Larry J. [2 ]
机构
[1] Marquette Univ, POB 1881, Milwaukee, WI 53201 USA
[2] Univ Pacific, Stockton, CA 95211 USA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A domination graph of a digraph D, dom(D), is created using the vertex set of D, V(D). There is an edge uv in dom(D) whenever (u, z) or (v, z) is in the arc set of D, A(D), for every other vertex z is an element of V(D). For only some digraphs D has the structure of dom(D) been characterized. Examples of this are tournaments and regular digraphs. The authors have characterizations for the structure of digraphs D for which UG(D) = dom(D) or UG(D) congruent to dom(D). For example, when UG(D) congruent to dom(D), the only components of the complement of UG(D) are complete graphs, paths and cycles. Here, we determine values of i and j for which UG(D) congruent to dom(D) and UG(c)(D) = C-4 boolean OR P-i boolean OR P-j
引用
收藏
页码:25 / 41
页数:17
相关论文
共 50 条
  • [1] Digraphs with isomorphic underlying and domination graphs: Pairs of paths
    Factor, Kim A. S.
    Langley, Larry J.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 72 : 3 - 32
  • [2] Characterization of digraphs with equal domination graphs and underlying graphs
    Factor, Kim A. S.
    Langley, Larry J.
    DISCRETE MATHEMATICS, 2008, 308 (01) : 34 - 43
  • [3] A tight bound for independent domination of cubic graphs without 4-cycles
    Cho, Eun-Kyung
    Choi, Ilkyoo
    Kwon, Hyemin
    Park, Boram
    JOURNAL OF GRAPH THEORY, 2023, 104 (02) : 372 - 386
  • [4] GRAPHS WITHOUT 4-CYCLES
    CLAPHAM, CRJ
    FLOCKHART, A
    SHEEHAN, J
    JOURNAL OF GRAPH THEORY, 1989, 13 (01) : 29 - 47
  • [5] Decompositions of various complete graphs into isomorphic copies of 4-cycles with three pendant edges
    Abueida, Atif
    Alzahrani, Rabab
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 115 : 187 - 198
  • [6] Decompositions of Various Complete Graphs into Isomorphic Copies of 4-cycles with Three Pendant Edges
    Abueida, Atif
    Alzahrani, Rabab
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 53 - 64
  • [7] Extremal graphs without 4-cycles
    Firke, Frank A.
    Kosek, Peter M.
    Nash, Evan D.
    Williford, Jason
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (03) : 327 - 336
  • [8] ON EXTREMAL GRAPHS WITHOUT 4-CYCLES
    YANG, YS
    UTILITAS MATHEMATICA, 1992, 41 : 204 - 210
  • [9] ON THE NUMBER OF GRAPHS WITHOUT 4-CYCLES
    KLEITMAN, DJ
    WINSTON, KJ
    DISCRETE MATHEMATICS, 1982, 41 (02) : 167 - 172
  • [10] ON THE NUMBER OF PATHS AND CYCLES FOR ALMOST ALL GRAPHS AND DIGRAPHS
    TOMESCU, I
    COMBINATORICA, 1986, 6 (01) : 73 - 79