ON ONE METHOD OF SOLUTION OF TWO-DIMENSIONAL CONTACT PROBLEMS WITH DRY FRICTION AND ADHESION

被引:0
|
作者
MOSSAKOVSKII, VI
BISKUP, AG
MOSSAKOVSKAIA, LV
机构
来源
DOKLADY AKADEMII NAUK SSSR | 1989年 / 308卷 / 03期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:561 / 564
页数:4
相关论文
共 50 条
  • [1] SOLUTION OF CONTACT PROBLEM WITH DRY FRICTION AND ADHESION
    MOSSAKOVSKII, VI
    BISKUP, AG
    MOSSAKOVSKAIA, LV
    DOKLADY AKADEMII NAUK SSSR, 1989, 309 (03): : 562 - 566
  • [2] Fundamental solution method for two-dimensional Stokes flow problems with one-dimensional periodicity
    Hidenori Ogata
    Kaname Amano
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 191 - 215
  • [3] Fundamental solution method for two-dimensional Stokes flow problems with one-dimensional periodicity
    Ogata, Hidenori
    Amano, Kaname
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (02) : 191 - 215
  • [4] A scalable TFETI algorithm for two-dimensional multibody contact problems with friction
    Dostal, Z.
    Kozubek, T.
    Horyl, P.
    Brzobohaty, T.
    Markopoulos, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (02) : 403 - 418
  • [5] A numerical algorithm for the solution of two-dimensional rough contact problems
    Ciavarella, M
    Demelio, G
    Murolo, C
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2005, 40 (05): : 463 - 476
  • [6] Contact surface element method for two-dimensional elastic contact problems
    Liu, ZX
    Yang, YW
    Williams, FW
    Jemah, AK
    STRUCTURAL ENGINEERING AND MECHANICS, 1998, 6 (04) : 363 - 375
  • [7] Mapping of Two-Dimensional Contact Problems on a Problem with a One-Dimensional Parametrization
    Popov, V. L.
    PHYSICAL MESOMECHANICS, 2018, 21 (01) : 80 - 84
  • [8] Mapping of Two-Dimensional Contact Problems on a Problem with a One-Dimensional Parametrization
    V. L. Popov
    Physical Mesomechanics, 2018, 21 : 80 - 84
  • [9] BEM solution of two dimensional unilateral contact problems with friction by a new approach
    Méchain-Renaud, C
    Cimetière, A
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2003, 27 (03) : 269 - 277
  • [10] A simple formulation for two-dimensional contact problems using a moving friction cone
    Wriggers, P
    Haraldsson, A
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2003, 19 (04): : 285 - 295