SELF-DUAL NON-ABELIAN VORTICES IN A PHI(2) CHERN-SIMONS THEORY

被引:16
|
作者
ANTILLON, A
ESCALONA, J
GERMAN, G
TORRES, M
机构
[1] UNIV AUTONOMA ESTADO MORELOS,FAC CIENCIAS,CUERNAVACA 62250,MORELOS,MEXICO
[2] UNIV NACL AUTONOMA MEXICO,INST FIS,MEXICO CITY 01000,DF,MEXICO
关键词
CHERN-SIMONS; NONTOPOLOGICAL; NON-ABELIAN; VORTICES;
D O I
10.1016/0370-2693(95)01077-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a non-Abelian Chem-Simons gauge theory in 2 + 1 dimensions with the inclusion of an anomalous magnetic interaction. For a particular relation between the Chem-Simons (CS) mass and the anomalous magnetic coupling the equations for the gauge fields reduce from second- to first-order differential equations of the pure CS type. We derive the Bogomol'nyi-type or self-dual equations for a Phi(2) scalar potential, when the scalar and topological masses are equal. The corresponding vortex solutions carry magnetic flux that is not quantized due to the non-topological nature of the solitons. However, as a consequence of the quantization of the CS term, both the electric charge and angular momentum are quantized.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 50 条
  • [1] The existence of self-dual vortices in a non-Abelian Φ2 Chern-Simons theory
    Chen, Shouxin
    Wang, Ying
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [2] NON-ABELIAN, SELF-DUAL CHERN-SIMONS VORTICES COUPLED TO GRAVITY
    GUIMARAES, MEX
    LONDON, LAJ
    [J]. PHYSICAL REVIEW D, 1995, 52 (10): : 6057 - 6064
  • [3] SELF-DUAL NON-ABELIAN CHERN-SIMONS SOLITONS
    LEE, KY
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (05) : 553 - 555
  • [4] Doubly periodic self-dual vortices in a relativistic non-Abelian Chern-Simons model
    Han, Xiaosen
    Tarantello, Gabriella
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) : 1149 - 1176
  • [5] Non-Abelian Chern-Simons vortices
    Antillon, A
    Escalona, J
    German, G
    Torres, M
    [J]. WORKSHOPS ON PARTICLES AND FIELDS AND PHENOMENOLOGY OF FUNDAMENTAL INTERACTIONS, 1996, (359): : 479 - 482
  • [6] Non-abelian Chern-Simons vortices
    Lozano, G. S.
    Marques, D.
    Moreno, E. F.
    Schaposnik, F. A.
    [J]. PHYSICS LETTERS B, 2007, 654 (1-2) : 27 - 34
  • [7] SELF-DUAL CHERN-SIMONS VORTICES
    JACKIW, R
    WEINBERG, EJ
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (19) : 2234 - 2237
  • [8] Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model
    Xiaosen Han
    Gabriella Tarantello
    [J]. Calculus of Variations and Partial Differential Equations, 2014, 49 : 1149 - 1176
  • [9] PERTURBED SELF-DUAL CHERN-SIMONS VORTICES
    JATKAR, DP
    KHARE, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19): : L1201 - L1207
  • [10] GENERALIZED SELF-DUAL CHERN-SIMONS VORTICES
    BURZLAFF, J
    CHAKRABARTI, A
    TCHRAKIAN, DH
    [J]. PHYSICS LETTERS B, 1992, 293 (1-2) : 127 - 131