Theory of functions - New comment on the maximum of semi-continuous functions

被引:0
|
作者
Appert, A
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:813 / 815
页数:3
相关论文
共 50 条
  • [1] SEMI-CONTINUOUS AND IRRESOLUTE FUNCTIONS
    HAMLETT, TR
    TEXAS JOURNAL OF SCIENCE, 1976, 27 (01): : 45 - 49
  • [2] On strongly θ-semi-continuous functions
    Jafari, S
    Noiri, T
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (11): : 1195 - 1201
  • [3] NOTE ON SEMI-CONTINUOUS FUNCTIONS
    JENSEN, JA
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1967, 43 (3-4): : 158 - &
  • [4] On the continuous points of semi-continuous functions
    Zengyan Si
    Zhiwei Zhang
    The Journal of Analysis, 2021, 29 : 297 - 302
  • [5] Totally semi-continuous functions
    Nour, T. M.
    Indian Journal of Pure and Applied Mathematics, 1995, 26 (07):
  • [6] On the continuous points of semi-continuous functions
    Si, Zengyan
    Zhang, Zhiwei
    JOURNAL OF ANALYSIS, 2021, 29 (01): : 297 - 302
  • [7] ON CHARACTERIZATIONS OF SEMI-CONTINUOUS FUNCTIONS
    BISWAS, N
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1970, 48 (04): : 399 - &
  • [8] Computability on continuous, lower semi-continuous and upper semi-continuous real functions
    Weihrauch, K
    Zheng, XH
    THEORETICAL COMPUTER SCIENCE, 2000, 234 (1-2) : 109 - 133
  • [9] On lower and upper semi-continuous functions
    V. Renukadevi
    S. Vadakasi
    Acta Mathematica Hungarica, 2020, 160 : 1 - 12
  • [10] On lower and upper semi-continuous functions
    Renukadevi, V.
    Vadakasi, S.
    ACTA MATHEMATICA HUNGARICA, 2020, 160 (01) : 1 - 12