MAXIMUM-PRINCIPLES FOR THE POLYHARMONIC EQUATION ON LIPSCHITZ-DOMAINS

被引:23
|
作者
PIPHER, J [1 ]
VERCHOTA, GC [1 ]
机构
[1] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13244
关键词
NONSMOOTH; DILATION INVARIANT; IMPLICIT FUNCTIONAL; AGMON-MIRANDA;
D O I
10.1007/BF02345828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Agmon-Miranda maximum principle for the polyharmonic equations of all orders is shown to hold in Lipschitz domains in R(3). In R(n), n greater than or equal to 4, the Agmon-Miranda maximum principle and L(p)-Dirichlet estimates for certain p > 2 are shown to fail in Lipschitz domains for these equations. In particular if 4 less than or equal to n less than or equal to 2m + 1 the L(p) Dirichlet problem for Delta(m) fails to be solvable for p > 2(n - 1)/(n - 3).
引用
收藏
页码:615 / 636
页数:22
相关论文
共 50 条