Integral Transform Method for Solving Time Fractional Systems and Fractional Heat Equation

被引:1
|
作者
Aghili, A. [1 ]
Masomi, M. R. [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Math, POB 1841, Rasht, Iran
来源
关键词
Caputo fractional derivative; Time fractional heat equation; Laplace transform; Singular integral equation;
D O I
10.5269/bspm.v32i1.19965
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.
引用
收藏
页码:305 / 322
页数:18
相关论文
共 50 条
  • [1] A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves
    Modanli, Mahmut
    Murad, Muhammad Amin Sadiq
    Abdulazeez, Sadeq Taha
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [2] A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves
    Mahmut Modanli
    Muhammad Amin Sadiq Murad
    Sadeq Taha Abdulazeez
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [3] An iterative method for solving linear fuzzy fractional integral equation
    Bica, Alexandru Mihai
    Ziari, Shokrollah
    Satmari, Zoltan
    [J]. SOFT COMPUTING, 2022, 26 (13) : 6051 - 6062
  • [4] An iterative method for solving linear fuzzy fractional integral equation
    Alexandru Mihai Bica
    Shokrollah Ziari
    Zoltan Satmari
    [J]. Soft Computing, 2022, 26 : 6051 - 6062
  • [5] Solving the Linear Time-Fractional Wave Equation by Generalized Differential Transform Method
    Chen, Xuehui
    Wei, Liang
    Sui, Jizhe
    Zheng, Liancun
    [J]. PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 4476 - 4480
  • [6] Solving a Higher-Dimensional Time-Fractional Diffusion Equation via the Fractional Reduced Differential Transform Method
    Abuasad, Salah
    Alshammari, Saleh
    Al-rabtah, Adil
    Hashim, Ishak
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [7] A numerical method for solving the time fractional Schrodinger equation
    Liu, Na
    Jiang, Wei
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (04) : 1235 - 1248
  • [8] Spectral method for solving the time fractional Boussinesq equation
    Zhang, Hui
    Jiang, Xiaoyun
    Zhao, Moli
    Zheng, Rumeng
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 85 : 164 - 170
  • [9] EXACT SOLUTIONS OF TIME-FRACTIONAL HEAT CONDUCTION EQUATION BY THE FRACTIONAL COMPLEX TRANSFORM
    Li, Zheng-Biao
    Zhu, Wei-Hong
    He, Ji-Huan
    [J]. THERMAL SCIENCE, 2012, 16 (02): : 335 - 338
  • [10] Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation
    Darzi, Rahmat
    Mohammadzade, Bahar
    Mousavi, Sahar
    Beheshti, Rozita
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 6 (01): : 79 - 84