SUPERPOSITION REFINEMENT OF PARALLEL ALGORITHMS

被引:0
|
作者
BACK, RJR [1 ]
SERE, K [1 ]
机构
[1] UNIV UTRECHT, DEPT COMP SCI, UTRECHT, NETHERLANDS
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Superposition refinement enhances aa algorithm by superposing one computation mechanism onto another mechanism, in a way that preserves the behavior of the original mechanism. Superposition seems to be particularly well suited to the development of parallel and distributed programs. An originally simple sequential algorithm can be extended with mechanisms that distribute control and state information to many processes, thus permitting efficient parallel execution of the algorithm. We will in this paper show how superposition of parallel algorithms is expressed in the refinement calculus. We illustrate the power of this method by a case study, showing how a distributed broadcasting algorithm is derived through a sequence of superposition refinements.
引用
收藏
页码:475 / 493
页数:19
相关论文
共 50 条
  • [1] STEPWISE REFINEMENT OF PARALLEL ALGORITHMS
    BACK, RJR
    SERE, K
    SCIENCE OF COMPUTER PROGRAMMING, 1990, 13 (2-3) : 133 - 180
  • [2] Parallel algorithms for adaptive mesh refinement
    Jones, MT
    Plassmann, PE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (03): : 686 - 708
  • [3] Parallel Delaunay refinement:: Algorithms and analyses
    Spielman, Daniel A.
    Teng, Shang-Hua
    Uengoer, Alper
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2007, 17 (01) : 1 - 30
  • [4] Refinement of Parallel Algorithms Down to LLVM: Applied to Practically Efficient Parallel Sorting
    Lammich, Peter
    JOURNAL OF AUTOMATED REASONING, 2024, 68 (03)
  • [5] Refinement of Parallel Algorithms Down to LLVM: Applied to Practically Efficient Parallel Sorting
    Lammich, Peter
    Journal of Automated Reasoning, 1600, 68 (03):
  • [6] Parallel algorithms for computing the smallest binary tree size in unit simplex refinement
    Aparicio, G.
    Salmeron, J. M. G.
    Casado, L. G.
    Asenjo, R.
    Hendrix, E. M. T.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 112 : 166 - 178
  • [7] Scalable parallel regridding algorithms for block-structured adaptive mesh refinement
    Luitjens, J.
    Berzins, M.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (13): : 1522 - 1537
  • [8] Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes
    Ray, Navamita
    Grindeanu, Iulian
    Zhao, Xinglin
    Mahadevan, Vijay
    Jiao, Xiangmin
    COMPUTER-AIDED DESIGN, 2017, 85 : 68 - 82
  • [9] Parallel superposition for bulk synchronous parallel ML
    Loulergue, F
    COMPUTATIONAL SCIENCE - ICCS 2003, PT III, PROCEEDINGS, 2003, 2659 : 223 - 232
  • [10] PHASE REFINEMENT IN STRUCTURE INTERPRETATION BY SUPERPOSITION METHOD
    SOROTA, MI
    SIMONOV, VI
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1971, 15 (04): : 589 - &